Aggregate stability and visual evaluation of soil structure in biodynamic cultivation of Burgundy vineyard soils

Author(s):  
Jürgen Fritz ◽  
Finja Lauer ◽  
Anette Wilkening ◽  
Pierre Masson ◽  
Stephan Peth
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Dan Li ◽  
Ningning Yin ◽  
Ruiwei Xu ◽  
Liping Wang ◽  
Zhen Zhang ◽  
...  

AbstractWe constructed a mining soil restoration system combining plant, complex substrate and microbe. Sludge was added to reconstructed mine substrates (RMS) to accelerate the reclamation process. The effect of sludge on plant growth, microbial activity, soil aggregate stability, and aggregation-associated soil characteristics was monitored during 10 years of reclamation. Results show that the height and total biomass of ryegrass increases with reclamation time. Sludge amendment increases the aggregate binding agent content and soil aggregate stability. Soil organic carbon (SOC) and light-fraction SOC (LFOC) in the RMS increase by 151% and 247% compared with those of the control, respectively. A similar trend was observed for the glomalin-related soil protein (GRSP). Stable soil aggregate indexes increase until the seventh year. In short, the variables of RMS determined after 3–7 years insignificantly differ from those of the untreated sample in the tenth-year. Furthermore, significant positive correlations between the GRSP and SOC and GRSP and soil structure-related variables were observed in RMS. Biological stimulation of the SOC and GRSP accelerates the recovery of the soil structure and ecosystem function. Consequently, the plant–complex substrate–microbe ecological restoration system can be used as an effective tool in early mining soil reclamation.


2014 ◽  
Vol 30 (1) ◽  
pp. 129-138 ◽  
Author(s):  
J. Cui ◽  
M. S. Askari ◽  
N. M. Holden

Agriculture ◽  
2021 ◽  
Vol 11 (10) ◽  
pp. 939
Author(s):  
Qiang Chen ◽  
Xingyi Zhang ◽  
Li Sun ◽  
Jianhua Ren ◽  
Yaru Yuan ◽  
...  

Tillage practices are critical for sustaining soil quality necessary for successful crop growth and productivity, but there are only few studies for strip tillage (ST) in the Mollisols region of Northeast China at present. A long-term (≥10-year) study was carried out to investigate the influence of within the tilled row (IR) and between rows (BR) in ST (10-year), conventional tillage (CT, 14-year) and no tillage (NT, 14-year) treatments on soil physicochemical properties. Soil samples were taken in May of 2019 at 0–5, 5–10, 10–20 and 20–30 cm depths and used to analyze bulk density (BD), soil aggregate distribution and stability, and soil organic carbon (SOC). Meanwhile, our study also explored the differences in seed emergence, soil moisture, and temperature during the seed emergence period, and yield of maize (Zea mays L.) among the different treatments. Similar soil properties were observed between ST-BR and NT, which showed they had a significantly greater BD, >0.25 mm water stable aggregate content (WR0.25) (especially in the amount of >2 mm and 1–2 mm size proportion), aggregate stability, and SOC than ST-IR and CT-IR at a depth of 0–20 cm. By improving soil conditions of seedbed, ST-IR and CT-IR increased soil temperature above NT by 1.64 °C and 1.80 °C, respectively, and ST-IR had a slight greater soil moisture than CT-IR in the top 10 cm layer during the seed emergence period. Late maize seed emergence was observed NT in than ST-IR and CT-IR and the average annual yields in ST were slightly greater than NT and CT, but the differences were not significant. Our results also showed that CT-BR had a poor soil structure and lower SOC than other treatments at 0–30 cm depth. We conclude from these long-term experimental results that ST could improve soil water-heat conditions to promote seed germination, maintain soil structure, and increase the maize yield and it should be applied in the Mollisols region of Northeast China.


2020 ◽  
Vol 12 (5) ◽  
pp. 2071 ◽  
Author(s):  
Márcio R. Nunes ◽  
Douglas L. Karlen ◽  
Thomas B. Moorman

Tillage intensity affects soil structure in many ways but the magnitude and type (+/−) of change depends on site-specific (e.g., soil type) and experimental details (crop rotation, study length, sampling depth, etc.). This meta-analysis examines published effects of chisel plowing (CP), no-tillage (NT) and perennial cropping systems (PER) relative to moldboard plowing (MP) on three soil structure indicators: wet aggregate stability (AS), bulk density (BD) and soil penetration resistance (PR). The data represents four depth increments (from 0 to >40-cm) in 295 studies from throughout the continental U.S. Overall, converting from MP to CP did not affect those soil structure indicators but reducing tillage intensity from MP to NT increased AS in the surface (<15-cm) and slightly decreased BD and PR below 25-cm. The largest positive effect of NT on AS was observed within Inceptisols and Entisols after a minimum of three years. Compared to MP, NT had a minimal effect on soil compaction indicators (BD and PR) but as expected, converting from MP to PER systems improved soil structure at all soil depths (0 to >40-cm). Among those three soil structure indicators, AS was the most sensitive to management practices; thus, it should be used as a physical indicator for overall soil health assessment. In addition, based on this national meta-analysis, we conclude that reducing tillage intensity improves soil structure, thus offering producers assurance those practices are feasible for crop production and that they will also help sustain soil resources.


2020 ◽  
Author(s):  
Viktória Labancz ◽  
András Sebők ◽  
Imre Czinkota ◽  
Tamás Szegi ◽  
András Makó

&lt;p&gt;Today, due to climate change, soil degradation processes related to extreme water supply situations (flood, inland water or drought) are occurring more and more frequently. Soil structure is one of the most important soil characteristics influencing many transport of materials (transport, storage of heat, gas, water and nutrients).Furthermore, it defines and ultimately determines the significant physical, chemical and biological processes involved and also the most important factor in agricultural crop production. Permanent water cover has a significant effect on soil structure, but the dynamics of disaggregation and the role of the soil factors influencing it is not yet fully understood. Our basic research aim is to investigate the effect of permanent water cover on soil structure on representative Hungarian soil samples. In our experiment, we sought to find the answer to the question of how long-term water coverage causes changes and damage to the soil structure under laboratory conditions by artificial water cover. We measured aggregate stability with Mastersizer 3000 Hydro LV laser diffractometry device and some soil chemistry parameters with Agilent 4210 MP-AES at different water cover times (selected in the literature). Based on experiences the effect of persistent water cover from the soil structure side can be most noticeable in the changes of macro- and microaggregate stability, as well as in the change of certain chemical parameters (e.g. calcium and iron content), thus, the aim of our research was to investigate these characteristics also. After compiling our results in a database, we evaluated and deduced statistical data on the long-term degradation effects of water cover. We also made an attempt to describe its disaggregation dynamics for different Hungarian soil types. Based on the results, we have selected the most sensitive soils for permanent water cover, which are also expected to be sensitive to extreme water management related to climate change.&lt;/p&gt;


Soil Research ◽  
2001 ◽  
Vol 39 (3) ◽  
pp. 465 ◽  
Author(s):  
T. G. Shepherd ◽  
S. Saggar ◽  
R. H. Newman ◽  
C. W. Ross ◽  
J. L. Dando

The effects of increasing cropping and soil compaction on aggregate stability and dry-sieved aggregate-size distribution, and their relationship to total organic C (TOC) and the major functional groups of soil organic carbon, were investigated on 5 soils of contrasting mineralogy. All soils except the allophanic soil showed a significant decline in aggregate stability under medium- to long-term cropping. Mica-rich, fine-textured mineral and humic soils showed the greatest increase in the mean weight diameter (MWD) of dry aggregates, while the oxide-rich soils, and particularly the allophanic soils, showed only a slight increase in the MWD after long-term cropping. On conversion back to pasture, the aggregate stability of the mica-rich soils increased and the MWD of the aggregate-size distribution decreased, with the humic soil showing the greatest recovery. Aggregate stability and dry aggregate-size distribution patterns show that soil resistance to structural degradation and soil resilience increased from fine-textured to coarse-textured to humic mica-rich soils to oxide-rich soils to allophanic soils. Coarse- and fine-textured mica-rich and oxide-rich soils under pasture contained medium amounts of TOC, hot-water soluble carbohydrate (WSC), and acid hydrolysable carbohydrate (AHC), all of which declined significantly under cropping. The rate of decline varied with soil type in the initial years of cropping, but was similar under medium- and long-term cropping. TOC was high in the humic mica-rich and allophanic soils, and levels did not decline appreciably under medium- and long-term cropping. 13C-nuclear magnetic resonance evidence also indicates that all major functional groups of soil organic carbon declined under cropping, with O-alkyl C and alkyl C showing the fastest and slowest rate of decline, respectively. On conversion back to pasture, both WSC and AHC returned to levels originally present under long-term pasture. TOC recovered to original pasture levels in the humic soil, but recovered only to 60–70% of original levels in the coarse- and fine-textured soils. Aggregate stability was strongly correlated to TOC, WSC, and AHC (P < 0.001), while aggregate-size distribution was moderately correlated to aggregate stability (P < 0.01) and weakly correlated to AHC (P < 0.05). Scanning electron microscopy indicated a loss of the binding agents around aggregates under cropping. The effect of the loss of these binding agents on soil structure was more pronounced in mica-rich soils than in oxide-rich and allophanic soils. The very high aggregate stabilities of the humic soil under pasture was attributed to the presence of a protective water-repellent lattice of long-chain polymethylene compounds around the soil aggregates.


Soil Research ◽  
2019 ◽  
Vol 57 (6) ◽  
pp. 546 ◽  
Author(s):  
Mariana Amato ◽  
Rocco Bochicchio ◽  
Giacomo Mele ◽  
Rosanna Labella ◽  
Roberta Rossi

Mucilage produced by myxodiaspores has been mainly studied for its role in seed ecology. This work investigates changes due to mucilage in soil structure and stability in the spermosphere of the myxodiaspore crop chia (Salvia hispanica L.). In sandy-loam (S) repacked soil sown with chia and subjected to wetting–drying (DW), Computer Assisted X-ray micro tomography showed that extrusion of a mucilage capsule formed a pore of volume twice that of the seed, surrounded by a shell of particles with higher porosity and lower pore size than the bulk soil. In three soils (S; loam, L; and clay-loam, C) the aggregate stability index to wet sieving (Stw) decreased with one and two DW cycles. Application of 2% w/w mucilage increased Stw before and after DW, from 29% in C to more than 60-fold in S. Mucilage-amended samples after DW had higher or equal Stw compared with unamended soil before DW. Soil retained at the surface of hydrated diaspores exposed to water flow changed with soil texture (11.3, 90.5 and 91.7mg on each hydrated seed for S, L and C respectively) and chia genotype (6.7, 9.9 and 12.8mg per hydrated seed in BC and G8 long-day flowering mutants and commercial Black chia respectively). Our results showed that myxodiaspores affected soil structure by providing a microenvironment of altered porosity and high stability around the mucilage capsule extruded by the hydrated seed. This finding characterises a transient but crucial time of crop production around sowing when physical properties of soil surrounding seeds are relevant to stability, germination and plant–microorganism relations.


2020 ◽  
Vol 94 (6) ◽  
pp. 2261-2276
Author(s):  
Danny Dwi Saputra ◽  
Rika Ratna Sari ◽  
Kurniatun Hairiah ◽  
James M. Roshetko ◽  
Didik Suprayogo ◽  
...  

AbstractAlternating degradation and restoration phases of soil quality, as is common in crop-fallow systems, can be avoided if the restorative elements of trees and forests can be integrated into productive agroforestry systems. However, evidence for the hypothesis of ‘internal restoration’ in agroforestry is patchy and the effectiveness may depend on local context. We investigated to what extent cocoa (Theobroma cacao, L.) agroforestry can recover soil structure and infiltration in comparison to monoculture systems across the Konaweha Watershed, Southeast Sulawesi. We compared soil organic carbon, fine root length and weight, soil aggregate stability, macroporosity and infiltration from three soil layers at five land use systems: i.e. degraded forests, 9–14 years old of complex-cocoa agroforestry, simple-cocoa agroforestry, monoculture cocoa and 1–4 years old annual food crops, all with three replications. In general, roots were concentrated in the upper 40 cm of soil depth, contained of 70% and 86% of total fine root length and weight. Compared to simple agroforestry and cocoa monoculture, complex agroforestry had greater root length and weight in the topsoil, even though it attained only half the values found in degraded forests. Higher root density was positively correlated to soil organic carbon. In upper soil layers, complex agroforestry had slightly higher soil aggregate stability compared to other agricultural systems. However, no significant difference was found in deeper layers. Complex agroforestry had higher soil macroporosity than other agricultural systems, but not sufficient to mimic forests. Degraded forests had two times faster steady-state soil infiltration than agricultural systems tested (13.2 cm h−1 and 6 cm h−1, respectively), relevant during peak rainfall events. Compared to other agricultural systems, complex agroforestry improves soil structure of degraded soil resulting from forest conversion. However, a considerable gap remains with forest soil conditions.


Soil Systems ◽  
2019 ◽  
Vol 3 (1) ◽  
pp. 21 ◽  
Author(s):  
Anika Lehmann ◽  
Katharina Fitschen ◽  
Matthias Rillig

Plastic is an anthropogenic, ubiquitous and persistent contaminant accumulating in our environment. The consequences of the presence of plastics for soils, including soil biota and the processes they drive, are largely unknown. This is particularly true for microplastic. There is only little data available on the effect of microplastics on key soil processes, including soil aggregation. Here, we investigated the consequences of polyester microfiber contamination on soil aggregation of a sandy soil under laboratory conditions. We aimed to test if the microfiber effects on soil aggregation were predominantly physical or biological. We found that soil biota addition (compared to sterile soil) had a significant positive effect on both the formation and stabilization of soil aggregates, as expected, while wet-dry cycles solely affected aggregate formation. Polyester microfiber contamination did not affect the formation and stability of aggregates. But in the presence of soil biota, microfibers reduced soil aggregate stability. Our results show that polyester microfibers have the potential to alter soil structure, and that these effects are at least partially mediated by soil biota.


Soil Research ◽  
2007 ◽  
Vol 45 (3) ◽  
pp. 218 ◽  
Author(s):  
J. M. Kirkham ◽  
B. A. Rowe ◽  
R. B. Doyle

Changes in the soil structure and hydraulic conductivity of an Acidic Red Ferrosol were measured in a long-term (1968–2003) fertiliser experiment on pasture in north-western Tasmania, Australia. Studies were initiated following observations of both softer soil surface and cracking on plots that had received 15 t/ha of ground agricultural limestone. Liming decreased penetration resistance and increased hydraulic conductivity. These structural improvements were associated with increased mean dry aggregate size, a small increase in wet aggregate stability, higher exchangeable calcium levels, and increased plant growth, but a 9% decrease in total soil organic carbon in the surface 50 mm. This decrease in organic carbon was not associated with deterioration in soil structure, as may have been anticipated. This was probably because total organic C was still 82 g/kg on unlimed plots. Decreases in soil penetration resistance due to liming increased the likelihood of pugging from livestock but may improve ease of tillage. This research demonstrates that liming can improve the structure of a well-aggregated Ferrosol as well as its previously reported effects of increasing soil pH and yields of pasture and barley despite decreasing organic C.


Sign in / Sign up

Export Citation Format

Share Document