Permutation Tests Applied to Antibiotic Drug Resistance

1974 ◽  
Vol 69 (345) ◽  
pp. 87-92 ◽  
Author(s):  
R. K. Tsutakawa ◽  
S. L. Yang
Author(s):  
Sophia Inbaraj ◽  
Vamshi Krishna Sriram ◽  
Prasad Thomas ◽  
Abhishek Verma ◽  
Pallab Chaudhuri

Antibiotic resistance is an emerging threat to achieving one health all over the globe. The phenomenon leads to the emergence of drug-resistant microbes previously susceptible to an antibiotic. Drug-resistant microbes are the major reasons for medical complications like patient mortality and treatment failure. Unregulated use of antibiotics in animal husbandry is one of the major reasons for the emergence of antibiotic resistance. The resistance enters the human population mainly through the food chain. The genetic markers associated with drug resistance spread among different bacterial species by horizontal gene transfer mechanisms. Therefore, regulation of antibiotics use in animal husbandry and proper safety measures at farm level are necessary to check drug-resistant microbes entering the food chain. This chapter discusses the antibiotics, antibiotic resistance, genetic mechanisms involved, the spread of resistance, and also the available strategies to combat antimicrobial drug resistance.


2019 ◽  
Vol 9 (1) ◽  
Author(s):  
Bhawna Malik ◽  
Samit Bhattacharyya

An amendment to this paper has been published and can be accessed via a link at the top of the paper.


2005 ◽  
Vol 33 (5) ◽  
pp. 1000 ◽  
Author(s):  
E.D. Reynolds ◽  
I.D. Kerr ◽  
J.H. Cove

Author(s):  
Awais Ahmad ◽  
Syed Abbas Raza ◽  
Akasha Aftab ◽  
Tahsin Gulzar ◽  
Sadia Aslam ◽  
...  

2021 ◽  
pp. 45-51
Author(s):  
А.Б. ДЖУМАГАЗИЕВА ◽  
Е.Н. САХИПОВ ◽  
С. ТУРГАНБАЙ ◽  
Н.М. АТАГЕЛЬДИЕВА ◽  
У.М. ДАТХАЕВ ◽  
...  

Лекарственная устойчивость к антибиотикам вызвала необходимость поиска новых лекарственных средств и лекарственных форм. Известно, что семиорганические аддукты иода обладают широким спектром антимикробного действия. Эти же соединения, содержащие в своем составе молекулу галогена - иода, могут выступать в качестве галогенирующего агента в отношении антибиотиков. Изучено взаимодействие антибиотиков тетрациклина, гентамицина, хлорамфеникола, относящихся к классам поликетидов, аминогликозидов и амфениколов, соответственно, с аддуктом иода методами рефрактометрии, УФ-спектроскопии и ИК-спектроскопии. Показано, что антибиотик хлорамфеникол не взаимодействует с семиорганическим аддуктом иода ди2-аминопропионовой кислоты дитрииодоводород моногидратом (субстанция D1). Antibiotic drug resistance has necessitated the search for new drugs and dosage forms. It is known that semiorganic iodine adducts have a wide spectrum of antimicrobial effects. The same compounds containing a halogen-iodine molecule may act as a antibiotics halogenating agent. The interaction of antibiotics tetracycline, gentamicin, chloramphenicol belonging to the classes of polyketides, aminoglycosides and amphenicols, respectively, with iodine adduct by refractometry, UV spectroscopy and IR spectroscopy was studied. It has been shown that the antibiotic chloramphenicol does not interact with the semiorganic adduct of di-2-aminopropionic acid ditriiodinehydride monohydrate (D1 substance).


2020 ◽  
Author(s):  
Guo Liang Gan ◽  
Matthew Nguyen ◽  
Elijah Willie ◽  
Brian Lee ◽  
Cedric Chauve ◽  
...  

AbstractThe efficacy of antibiotic drug treatments in tuberculosis (TB) is significantly threatened by the development of drug resistance. There is a need for a robust diagnostic system that can accurately predict drug resistance in patients. In recent years, researchers have been taking advantage of whole-genome sequencing (WGS) data to infer antibiotic resistance. In this work we investigate the power of machine learning tools in inferring drug resistance from WGS data on three distinct datasets differing in their geographical diversity.We analyzed data from the Relational Sequencing TB Data Platform, which comprises global isolates from 32 different countries, the PATRIC database, containing isolates contributed by researchers around the world, and isolates collected by the British Columbia Centre for Disease Control in Canada. We predicted drug resistance to the first-line drugs: isoniazid, rifampicin, ethambutol, pyrazinamide, and streptomycin. We focused on the genes which previous evidence suggests are involved in drug resistance in TB.We called single-nucleotide polymorphisms using the Snippy pipeline, then applied different machine learning models. Following best practices, we chose the best parameters for each model via cross-validation on the training set and evaluated the performance via the sensitivity-specificity tradeoffs on the testing set.To the best of our knowledge, our study is the first to predict antibiotic resistance in TB across multiple datasets. We obtained a performance comparable to that seen in previous studies, but observed that performance may be negatively affected when training on one dataset and testing on another, suggesting the importance of geographical heterogeneity in drug resistance predictions. In addition, we investigated the importance of each gene within each model, and recapitulated some previously known biology of drug resistance. This study paves the way for further investigations, with the ultimate goal of creating an accurate, interpretable and globally generalizable model for predicting drug resistance in TB.Author summaryDrug resistance in pathogenic bacteria such as Mycobacterium tuberculosis can be predicted by an application of machine learning models to next-generation sequencing data. The received wisdom is that following standard protocols for training commonly used machine learning models should produce accurate drug resistance predictions.In this paper, we propose an important caveat to this idea. Specifically, we show that considering geographical diversity is critical for making accurate predictions, and that different geographic regions may have disparate drug resistance mechanisms that are predominant. By comparing the results within and across a regional dataset and two international datasets, we show that model performance may vary dramatically between settings.In addition, we propose a new method for extracting the most important variants responsible for predicting resistance to each first-line drug, and show that it is to recapitulate a large amount of what is known about the biology of drug resistance in Mycobacterium tuberculosis.


2020 ◽  
Author(s):  
SOPHAPHAN INTAHPHUAK ◽  
TAWATCHAI APIDECHKUL ◽  
PATITA KUIPIAPHUM

Abstract Background Antibiotic resistance is often reported and is of major concern as a public health problem. The hill tribe people in Thailand are considered populations vulnerable to antibiotic resistance due to their poor economic and educational status. The study aimed to estimate the prevalence of, the factors associated with, and the major species of bacteria involved in antibiotic drug resistance among the Lahu hill tribe people in northern Thailand. Methods A cross-sectional study was conducted to gather information from participants between March and September 2019. A validated questionnaire was used for data collection. Participants who presented an illness related to infectious diseases were eligible to participate in the study and were asked to obtain specific specimens. Antibiotic susceptibility was tested by the Kirbey-Bauer disk diffusion test. Chi-square tests and logistic regression were used to detect the associations between variables at the significance level of α = 0.05. Results A total of 240 participants were recruited into the study; 70.4% were females, 25.4% were aged 30–40 years. More than half worked in the agricultural sector (55.4%) and had an education level of less than primary school (45.8%). The majority had urinary tract infections (67.9%) with two major pathogenic species of the infection: Escherichia coli (12.8%) and Enterobacter cloacae (8.0%). The prevalence of antibiotic resistance was 16.0%. Escherichia coli and Klebsiella pneumoniae species were found to have multidrug resistance that was greater than that of other species, while ampicillin was found to have the greatest drug resistance. In the multivariate model, it was found that those who had poor knowledge of antibiotic use had a 2.56-fold greater chance (95% CI = 1.09–5.32) of having antibiotic resistance than did those who had good knowledge of antibiotic use, and those who had poor antibiotic use behaviors had a 1.79-fold greater chance (95% CI = 1.06–4.80) of having antibiotic resistance than did those who had good antibiotic use behaviors. Conclusion Effective public health interventions are urgently needed to reduce antibiotic drug resistance among the Lahu people by improving their knowledge and skills regarding the proper use of antibiotics and eventually minimizing antibiotic resistance.


Sign in / Sign up

Export Citation Format

Share Document