Quercetin Impairs HuR-Driven Progression and Migration of Triple Negative Breast Cancer (TNBC) Cells

2021 ◽  
pp. 1-14
Author(s):  
Sheikh Mohammad Umar ◽  
Sushmita Patra ◽  
Akanksha Kashyap ◽  
Arundhathi Dev J R ◽  
Lalit Kumar ◽  
...  
2021 ◽  
Vol 11 ◽  
Author(s):  
Qianxue Wu ◽  
Xin Tang ◽  
Wenming Zhu ◽  
Qing Li ◽  
Xiang Zhang ◽  
...  

BackgroundPatients with triple-negative breast cancer (TNBC) have poor overall survival. The present study aimed to investigate the potential prognostics of TNBC by analyzing breast cancer proteomic and transcriptomic datasets.MethodsCandidate proteins selected from CPTAC (the National Cancer Institute’s Clinical Proteomic Tumor Analysis Consortium) were validated using datasets from METABRIC (Molecular Taxonomy of Breast Cancer International Consortium). Kaplan-Meier analysis and ROC (receiver operating characteristic) curve analysis were performed to explore the prognosis of candidate genes. GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis were performed on the suspected candidate genes. Single-cell RNA-seq (scRNA-seq) data from GSE118389 were used to analyze the cell clusters in which OBFC2A (Oligosaccharide-Binding Fold-Containing Protein 2A) was mainly distributed. TIMER (Tumor Immune Estimation Resource) was used to verify the correlation between OBFC2A expression and immune infiltration. Clone formation assays and wound healing assays were used to detect the role of OBFC2A expression on the proliferation, invasion, and migration of breast cancer cells. Flow cytometry was used to analyze the effects of silencing OBFC2A on breast cancer cell cycle and apoptosis.ResultsSix candidate proteins were found to be differentially expressed in non-TNBC and TNBC groups from CPTAC. However, only OBFC2A was identified as an independently poor prognostic gene marker in METABRIC (HR=3.658, 1.881-7.114). And OBFC2A was associated with immune functions in breast cancer. Biological functional experiments showed that OBFC2A might promote the proliferation and migration of breast cancer cells. The inhibition of OBFC2A expression blocked the cell cycle in G1 phase and inhibited the transformation from G1 phase to S phase. Finally, downregulation of OBFC2A also increased the total apoptosis rate of cells.ConclusionOn this basis, OBFC2A may be a potential prognostic biomarker for TNBC.


Oncotarget ◽  
2016 ◽  
Vol 8 (12) ◽  
pp. 19455-19466 ◽  
Author(s):  
Zhishuang Li ◽  
Qingyong Meng ◽  
Aifeng Pan ◽  
Xiaojuan Wu ◽  
Jingjing Cui ◽  
...  

PLoS ONE ◽  
2019 ◽  
Vol 14 (5) ◽  
pp. e0217789 ◽  
Author(s):  
Norman Fultang ◽  
Abhinav Illendula ◽  
Brian Chen ◽  
Chun Wu ◽  
Subash Jonnalagadda ◽  
...  

Biomolecules ◽  
2019 ◽  
Vol 9 (9) ◽  
pp. 436 ◽  
Author(s):  
Wenwei Han ◽  
Lili Song ◽  
Yingdi Wang ◽  
Youjing Lv ◽  
Xiangyan Chen ◽  
...  

Hyaluronic acid (hyaluronan, HA) is a critical component of the extracellular matrix and plays an important biological function of interacting with different molecules and receptors. In this study, both odd- and even-numbered HA oligosaccharides (HAOs) with specific degrees of polymerization (DP) were prepared by different hydrochloric acid hydrolyses, and their structures were characterized by means of HPLC, ESI-MS, and NMR. The data show that the odd-numbered HAOs (DP3-11) have a glucuronic acid reducing end, while the even-numbered HAOs (DP2-10) have an N-acetylglucosamine reducing end. Biological evaluations indicated that all HAOs significantly inhibited the growth and migration of triple-negative breast cancer (TNBC) MDA-MB-231 cells. Among these oligosaccharides, the HA tetrasaccharide (DP4) was confirmed to be the minimum fragment necessary to inhibit MDA-MB-231 cells. Our data suggest that HAOs have potential value in the treatment of TNBC.


Sign in / Sign up

Export Citation Format

Share Document