In vitro optimization of miniature bronchoscope lentiviral vector delivery for the small animal lung

2021 ◽  
pp. 1-9
Author(s):  
Nathan Rout-Pitt ◽  
Martin Donnelley ◽  
David Parsons
Viruses ◽  
2021 ◽  
Vol 13 (7) ◽  
pp. 1288
Author(s):  
Wendy Dong ◽  
Boris Kantor

CRISPR/Cas technology has revolutionized the fields of the genome- and epigenome-editing by supplying unparalleled control over genomic sequences and expression. Lentiviral vector (LV) systems are one of the main delivery vehicles for the CRISPR/Cas systems due to (i) its ability to carry bulky and complex transgenes and (ii) sustain robust and long-term expression in a broad range of dividing and non-dividing cells in vitro and in vivo. It is thus reasonable that substantial effort has been allocated towards the development of the improved and optimized LV systems for effective and accurate gene-to-cell transfer of CRISPR/Cas tools. The main effort on that end has been put towards the improvement and optimization of the vector’s expression, development of integrase-deficient lentiviral vector (IDLV), aiming to minimize the risk of oncogenicity, toxicity, and pathogenicity, and enhancing manufacturing protocols for clinical applications required large-scale production. In this review, we will devote attention to (i) the basic biology of lentiviruses, and (ii) recent advances in the development of safer and more efficient CRISPR/Cas vector systems towards their use in preclinical and clinical applications. In addition, we will discuss in detail the recent progress in the repurposing of CRISPR/Cas systems related to base-editing and prime-editing applications.


2003 ◽  
Vol 2 (5) ◽  
pp. 449-454 ◽  
Author(s):  
Colleen DesRosiers ◽  
Marc S. Mendonca ◽  
Craig Tyree ◽  
Vadim Moskvin ◽  
Morris Bank ◽  
...  

For most basic radiobiological research applications involving irradiation of small animals, it is difficult to achieve the same high precision dose distribution realized with human radiotherapy. The precision for irradiations performed with standard radiotherapy equipment is ±2 mm in each dimension, and is adequate for most human treatment applications. For small animals such as rodents, whose organs and tissue structures may be an order of magnitude smaller than those of humans, the corresponding precision required is closer to ±0.2 mm, if comparisons or extrapolations are to be made to human data. The Leksell Gamma Knife is a high precision radiosurgery irradiator, with precision in each dimension not exceeding 0.5 mm, and overall precision of 0.7 mm. It has recently been utilized to treat ocular melanoma and induce targeted lesions in the brains of small animals. This paper describes the dosimetry and a technique for performing irradiation of a single rat eye and lens with the Gamma Knife while allowing the contralateral eye and lens of the same rat to serve as the “control”. The dosimetry was performed with a phantom in vitro utilizing a pinpoint ion chamber and thermoluminescent dosimeters, and verified by Monte Carlo simulations. We found that the contralateral eye received less than 5% of the administered dose for a 15 Gy exposure to the targeted eye. In addition, after 15 Gy irradiation 15 out of 16 animals developed cataracts in the irradiated target eyes, while 0 out of 16 contralateral eyes developed cataracts over a 6-month period of observation. Experiments at 5 and 10 Gy also confirmed the lack of cataractogenesis in the contralateral eye. Our results validate the use of the Gamma Knife for cataract studies in rodents, and confirmed the precision and utility of the instrument as a small animal irradiator for translational radiobiology experiments.


2013 ◽  
Vol 113 (suppl_1) ◽  
Author(s):  
Xuan Guan ◽  
David L Mack ◽  
Claudia M Moreno ◽  
Fernando Santana ◽  
Charles E Murry ◽  
...  

Introduction: Human somatic cells can be reprogrammed into primitive stem cells, termed induced pluripotent stem cells (iPSCs). These iPSCs can be extensively expanded in vitro and differentiated into multiple functional cell types, enabling faithful preservation of individual’s genotype and large scale production of disease targeted cellular components. These unique cellular reagents thus hold tremendous potential in disease mechanism study, drugs screening and cell replacement therapy. Due to the genetic mutation of the protein dystrophin, many DMD patients develop fatal cardiomyopathy with no effective treatment. The underlying pathogenesis has not been fully elucidated. Hypothesis: We tested the hypothesis that iPSCs could be generated from DMD patients’ urine samples and differentiated into cardiomyocytes, recapitulating the dystrophic phenotype. Methods: iPSCs generation was achieved by introducing a lentiviral vector expressing Oct4, Sox2, c-Myc and Klf4 into cells derived from patient’s (n=1) and healthy volunteers’ (n=3) urine. Cardiomyocytes were derived by sequentially treating iPSCs with GSK3 inhibitor CHIR99021 and Wnt inhibitor IWP4. Differentiated cardiomyocytes were subjected to calcium imaging, electrophysiology recording, Polymerase Chain Reaction (PCR) analysis, and immunostaining. Results: iPSCs were efficiently generated from human urine samples and further forced to differentiate into contracting cardiomyocytes. PCR analysis and immunostaining confirmed the expression of a panel of cardiac markers. Both normal and patient iPSC derived cardiomyocytes exhibited spontaneous and field stimulated calcium transients (up to 2Hz), as well as action potentials with ventricular-like and nodal-like characteristics. Anti-dystrophin antibodies stained normal iPSC-derived cardiomyocyte membranes but did not react against DMD iPSC-derived cardiomyocytes. Conclusions: Cardiomyocytes can be efficiently generated from human urine, through the cellular reprogramming technology. DMD cardiomyocytes retained the patient’s genetic information and manifested a dystrophin-null phenotype. Functional assessments are underway to determine differences that may exist between genotypes.


2015 ◽  
Vol 112 (12) ◽  
pp. 2611-2617 ◽  
Author(s):  
Ana M. Chamoun-Emanuelli ◽  
Gus Wright ◽  
Smith Roger ◽  
Robert C. Münch ◽  
Christian J. Buchholz ◽  
...  

2021 ◽  
Author(s):  
Xiaomei Liu ◽  
Feng Zhou ◽  
Weixiao Wang ◽  
Guofang Chen ◽  
Qingxiu Zhang ◽  
...  

Abstract Background Interleukin 9 (IL-9), produced mainly by T helper 9 (Th9) cells, has been recognized as an important regulator in multiple sclerosis (MS) and its animal model, experimental autoimmune encephalomyelitis (EAE). Astrocytes respond to IL-9 and reactive astrocytes always associate with blood-brain barrier damage, immune cells infiltration and spinal injury in MS and EAE. Several long non-coding RNAs (lncRNAs) with aberrant expression have been identified in the pathogenesis of MS. Here, we examined the effects of lncRNA Gm13568 (a co-upregulated lncRNA both in EAE mice and in mouse primary astrocytes activated by IL-9) on the activation of astrocytes and the process of EAE. Methods In vitro, shRNA-recombinant lentivirus with Glial fibrillary acidic protein (GFAP) promoter were performed to determine the relative gene expression and proinflammatory cytokines production in IL-9 treated-astrocytes using Western blot, real-time PCR and Cytometric bead array, respectively. RIP and ChIP assays were analyzed for the mechanism of lncRNA Gm13568 regulating gene expression. Immunofluorescence assays was performed to measure the protein expression in astrocytes. In vivo, H&E staining and LFB staining were applied to detect the inflammatory cells infiltrations and the medullary sheath damage in spinal cords of EAE mice infected by the recombinant lentivirus. Results were analyzed by one-way ANOVA or student’s t-test, as appropriate. Results Knockdown of the endogenous lncRNA Gm13568 remarkably inhibits the Notch1 expression, astrocytosis and the phosphorylation of signal transducer and activator of transcription 3 (p-STAT3) as well as the production of inflammatory cytokines and chemokines (IL-6, TNF-α, IP-10) in IL-9 activated astrocytes. In which, Gm13568 associates with CBP/P300 is enriched in the promoter of Notch1 genes. More importantly, inhibiting Gm13568 with lentiviral vector in astrocytes ameliorates significantly inflammation and demyelination in EAE mice, therefore delaying the EAE process. Conclusions These findings uncover that Gm13568 regulates the production of inflammatory cytokines in active astrocytes and affects the pathogenesis of EAE through the Notch1/STAT3 pathway. LncRNA Gm13568 may be a promising target for treating MS and demyelinating diseases.


Author(s):  
Zachary Fralish ◽  
Ethan M. Lotz ◽  
Taylor Chavez ◽  
Alastair Khodabukus ◽  
Nenad Bursac

The neuromuscular junction (NMJ) is a specialized cholinergic synaptic interface between a motor neuron and a skeletal muscle fiber that translates presynaptic electrical impulses into motor function. NMJ formation and maintenance require tightly regulated signaling and cellular communication among motor neurons, myogenic cells, and Schwann cells. Neuromuscular diseases (NMDs) can result in loss of NMJ function and motor input leading to paralysis or even death. Although small animal models have been instrumental in advancing our understanding of the NMJ structure and function, the complexities of studying this multi-tissue system in vivo and poor clinical outcomes of candidate therapies developed in small animal models has driven the need for in vitro models of functional human NMJ to complement animal studies. In this review, we discuss prevailing models of NMDs and highlight the current progress and ongoing challenges in developing human iPSC-derived (hiPSC) 3D cell culture models of functional NMJs. We first review in vivo development of motor neurons, skeletal muscle, Schwann cells, and the NMJ alongside current methods for directing the differentiation of relevant cell types from hiPSCs. We further compare the efficacy of modeling NMDs in animals and human cell culture systems in the context of five NMDs: amyotrophic lateral sclerosis, myasthenia gravis, Duchenne muscular dystrophy, myotonic dystrophy, and Pompe disease. Finally, we discuss further work necessary for hiPSC-derived NMJ models to function as effective personalized NMD platforms.


Cytotherapy ◽  
2012 ◽  
Vol 14 (10) ◽  
pp. 1235-1244 ◽  
Author(s):  
Eleanor M. Donnelly ◽  
Nicolas N. Madigan ◽  
Gemma E. Rooney ◽  
Andrew Knight ◽  
Bingkun Chen ◽  
...  

2014 ◽  
Vol 306 (6) ◽  
pp. L574-L583 ◽  
Author(s):  
Ruifeng Zhang ◽  
Liuhong Shi ◽  
Lin Zhou ◽  
Gensheng Zhang ◽  
Xiaohong Wu ◽  
...  

We previously observed that transgelin was preferentially expressed in human pulmonary arterial smooth muscle cells (PAMSCs) under hypoxia and that the upregulation of transgelin was independent of hypoxia-inducible factor 1α (HIF-1α). Reduced transgelin expression was accompanied by significantly impaired migration ability in vitro. However, the regulation mechanism of transgelin and its function in preventing hypoxic pulmonary hypertension (HPH) was unclear. In the present study, RNA interference with hypoxia-inducible factor 2α (HIF-2α) was employed in human PASMCs. Transgelin expression was diminished in HIF-2α-siRNA-treated cells at both the mRNA and protein levels under hypoxia. However, HIF-2α did not transactivate the transgelin promoter directly. TGF-β1 concentration in human PASMCs culture medium was higher under hypoxia, and the accumulated TGF-β1 under hypoxia was regulated by HIF-2α. Furthermore, luciferase and chromatin immunoprecipitation assays indicated that TGF-β1/Smad3 could bind to the transgelin promoter, resulting in increased transgelin expression. In addition to nonintact cellular migration, inhibition of transgelin expression resulted in impaired proliferation in vitro under hypoxia. A lentiviral vector used to inhibit transgelin expression was constructed and intratracheally instilled in rats 3 wk prior to hypoxia treatment. Our final results indicated that inhibition of transgelin expression locally could attenuate increased right ventricular systolic pressure and its associated cardiac and pulmonary vessel remodeling under hypoxia. Our findings indicate that HIF-2α upregulates transgelin indirectly and that accumulated TGF-β1 is a mediator in the upregulation of transgelin by HIF-2α under hypoxia. Inhibition of transgelin expression locally could prevent HPH and pulmonary vascular remodeling in vivo.


Circulation ◽  
2007 ◽  
Vol 116 (suppl_16) ◽  
Author(s):  
John Terrovitis ◽  
Keng Fai Kwok ◽  
Riikka Läutamaki ◽  
James M Engles ◽  
Andreas S Barth ◽  
...  

Background. Stem cells offer the promise of cardiac repair. Stem cell labeling is a prerequisite to tracking cell fate in vivo . Aim. To develop a reporter gene that permits in vivo stem cell labeling. We examined the sodium-iodide symporter (NIS), a protein that is not expressed in the heart, but promotes cellular uptake of 99m Tc or 124 I, thus permitting cell tracking by SPECT or PET imaging, respectively. Methods. The human NIS gene ( h NIS) was expressed in rat cardiac derived stem cells (rCDCs) using lentivirus driven by the CAG or CMV promoter. NIS function in transduced cells was confirmed by in vitro 99m Tc uptake. Eleven rats were injected with 1 or 2 million rCDCs intramyocardially immediately after LAD ligation; 6 with CMV-NIS and 5 with CAG-NIS cells. Dual isotope SPECT imaging was performed on a small animal SPECT/CT system, using 99m Tc for cell detection and 201 Tl for myocardial delineation, 24 hrs after cell injection. PET was performed on a small animal PET scanner using 124 I for cell tracking and 13 NH 3 for myocardial delineation, 48hrs after cell injection. Contrast Ratio (CR) was defined as [(signal in the cells)-(signal in blood pool)]/signal in blood pool. High resolution ex vivo SPECT scans of explanted hearts (n=3) were obtained to confirm that in vivo signal was derived from the cell injection site. The presence of h NIS mRNA was confirmed in injected hearts after animal sacrifice (n=2), by real-time RT-PCR. Results. NIS expression in rCDCs did not affect cell viability/proliferation (p=0.718, ctr vs NIS). In vitro 99m Tc uptake was 6.0±0.9% vs 0.07±0.05, without and with perchlorate (specific NIS blocker), respectively. NIS-transduced rCDCs were easily visualized as spots of 99m Tc or 124 I uptake within a perfusion deficit in the SPECT and PET images. CR was considerably higher when cells were transduced by the CMV-NIS virus in comparison to the CAG-NIS virus (70±40% vs 28±29%, p=0.085). Ex vivo small animal SPECT imaging confirmed that in vivo 99m Tc signals were localized to the injection sites. PCR confirmed the presence of h NIS mRNA in injected hearts. Conclusion. NIS expression allows non invasive in vivo stem cell tracking in the myocardium, using both SPECT and PET. This reporter gene has great potential for translation in future clinical applications.


Sign in / Sign up

Export Citation Format

Share Document