The effect of commercial humic acid on tomato plant growth and mineral nutrition

1998 ◽  
Vol 21 (3) ◽  
pp. 561-575 ◽  
Author(s):  
Fabrizio Adani ◽  
Pierluigi Genevini ◽  
Patrizia Zaccheo ◽  
Graziano Zocchi
Molecules ◽  
2020 ◽  
Vol 26 (1) ◽  
pp. 3
Author(s):  
Maite Olaetxea ◽  
Veronica Mora ◽  
Roberto Baigorri ◽  
Angel M. Zamarreño ◽  
Jose M. García-Mina

Some studies have reported that the capacity of humic substances to improve plant growth is dependent on their ability to increase root hydraulic conductivity. It was proposed that this effect is directly related to the structural conformation in solution of these substances. To study this hypothesis, the effects on root hydraulic conductivity and growth of cucumber plants of a sedimentary humic acid and two polymers—polyacrylic acid and polyethylene glycol—presenting a molecular conformation in water solution different from that of the humic acid have been studied. The results show that whereas the humic acid caused an increase in root hydraulic conductivity and plant growth, both the polyacrylic acid and the polyethylene glycol did not modify plant growth and caused a decrease in root hydraulic conductivity. These results can be explained by the different molecular conformation in water solution of the three molecular systems. The relationships between these biological effects and the molecular conformation of the three molecular systems in water solution are discussed.


2021 ◽  
Vol 12 (2) ◽  
pp. 480-490
Author(s):  
Ahsanul Salehin ◽  
Ramesh Raj Puri ◽  
Md Hafizur Rahman Hafiz ◽  
Kazuhito Itoh

Colonization of a biofertilizer Bacillus sp. OYK strain, which was isolated from a soil, was compared with three rhizospheric and endophytic Bacillus sp. strains to evaluate the colonization potential of the Bacillus sp. strains with a different origin. Surface-sterilized seeds of tomato (Solanum lycopersicum L. cv. Chika) were sown in the sterilized vermiculite, and four Bacillus sp. strains were each inoculated onto the seed zone. After cultivation in a phytotron, plant growth parameters and populations of the inoculants in the root, shoot, and rhizosphere were determined. In addition, effects of co-inoculation and time interval inoculation of Bacillus sp. F-33 with the other endophytes were examined. All Bacillus sp. strains promoted plant growth except for Bacillus sp. RF-37, and populations of the rhizospheric and endophytic Bacillus sp. strains were 1.4–2.8 orders higher in the tomato plant than that of Bacillus sp. OYK. The plant growth promotion by Bacillus sp. F-33 was reduced by co-inoculation with the other endophytic strains: Klebsiella sp. Sal 1, Enterobacter sp. Sal 3, and Herbaspirillum sp. Sal 6., though the population of Bacillus sp. F-33 maintained or slightly decreased. When Klebsiella sp. Sal 1 was inoculated after Bacillus sp. F-33, the plant growth-promoting effects by Bacillus sp. F-33 were reduced without a reduction of its population, while when Bacillus sp. F-33 was inoculated after Klebsiella sp. Sal 1, the effects were increased in spite of the reduction of its population. Klebsiella sp. Sal 1 colonized dominantly under both conditions. The higher population of rhizospheric and endophytic Bacillus sp. in the plant suggests the importance of the origin of the strains for their colonization. The plant growth promotion and colonization potentials were independently affected by the co-existing microorganisms.


Author(s):  
Hashmath Inayath Hussain ◽  
Naga Kasinadhuni ◽  
Tony Arioli

AbstractThis study investigated the effects of seaweed extract (SWE) made from the brown algae Durvillaea potatorum and Ascophyllum nodosum on plants and soil. The application of SWE to soil growing tomato plants showed dual effects. SWE comprehensively improved tomato plant growth (flower clusters, flower number, fruit number, root length, root and shoot dry weight, SPAD) and increased plant productivity (yield and quality). Similarly, SWE application effected soil biology at the soil root zone by increasing total bacterial count and available soil nitrogen and impacting bacterial community diversity with an increase in certain bacterial families linked to soil health. A broader understanding of the effects of SWE on the plant-soil ecosystem may offer breakthrough approaches for sustainable food production.


2021 ◽  
Vol 0 (0) ◽  
pp. 0-0
Author(s):  
Wafaa Abd El-Bary ◽  
Mahmoud Hegazi ◽  
Khaled El-Bagoury ◽  
Wael Sultan ◽  
Manal Mubarak

2021 ◽  
Author(s):  
Hemlata Bagla ◽  
Asma Khan

<p>Earth’s regolith consists of a vital component that is lacking on other planets ­­– the pedosphere or soil body – that is rich in organic matter, soil fauna, minerals, water, gases, that together support life and is thus essential for plant growth. In stark contrast to our blue planet, Martian regolith is devoid of organic matter and contains crushed volcanic rocks, with high mineral content and toxic chemicals like perchlorates. Nevertheless, Martian and Lunar regolith simulants formulated by NASA, have been experimented for crop growth by addition of organic matter suitable to bind xenobiotics and provide ample nutrients, as an essential step towards expanding our horizon in the extensive field of soil sciences.</p><p>Soil is an ecosystem as a whole and acts as a modifier of planet Earth’s atmosphere. The organic matter present in it originates mainly from plant metabolites with the onset of senescence and humification. Humic substances thus formed in the pedosphere exhibit exceptional characteristics for soil conditioning. Besides providing nutrients and aeration to the soil, they interact and bind with toxic heavy metals, radionuclides, pesticides, industrial dyes, and other xenobiotics that may be present as pollutants in the ecosystem, thus acting as natural sieves. As top soils have maximum organic matter, essential for plant growth, phenomenon like soil erosion leave the soils devoid of humic substances. Another major reason for soil degradation is excessive salinity, leading to osmotic and ionic stress in plants, eventually reducing their growth. Addition of humic acid in soils provides protection against high saline stress and minimizes yield losses. In India, one of the leading agrarian countries, it is a common practice to enrich soils with manure, which is an inexpensive form of humus-boost for the crops. Such practices aid the cyclic flow of organic matter in the environment, against the background of widespread soil degradation.</p><p>Another global form of soil degradation is radioactive contamination of soils which occurs mainly due to nuclear accidents and improper practices of radioactive waste disposal. In order to explore such interactions with humic acid following Green technique, batch biosorption studies were performed over a range of parameters, with radionuclides Cs and Sr that are found in low level radioactive wastes. Biosorption percentages of 91±2% and 84±1% were obtained for Cs and Sr respectively. The technique is chemical-free and emphasizes the ‘nature for nature’ outlook of solving environmental problems. Humic acid and its various forms thus act as traps for radionuclides and work as excellent restorative soil stimulants that supplement depleted soils, boost plant growth, and play a vital role in sustaining life on Earth.</p>


2018 ◽  
Vol 109 (4) ◽  
pp. 479-489 ◽  
Author(s):  
R. Sattari Nasab ◽  
M. Pahlavan Yali ◽  
M. Bozorg-Amirkalaee

AbstractThe cabbage aphid, Brevicoryne brassicae L. (Hem: Aphididae), is an important pest of canola that can considerably limit profitable crop production either through direct feeding or via transmission of plant pathogenic viruses. One of the most effective approaches of pest control is the use of biostimulants. In this study, the effects of humic acid, plant growth-promoting rhizobacteria (PGPR), and integrated application of both compounds were investigated on life table parameters of B. brassicae, and the tolerance of canola to this pest. B. brassicae reared on plants treated with these compounds had the lower longevity, fecundity, and reproductive period compared with control treatment. The intrinsic rate of natural increase (r) and finite rate of increase (λ) were lowest on PGPR treatment (0.181 ± 0.004 day−1 and 1.198 ± 0.004 day−1, respectively) and highest on control (0.202 ± 0.005 day−1 and 1.224 ± 0.006 day−1, respectively). The net reproductive rate (R0) under treatments of humic acid, PGPR and humic acid + PGPR was lower than control. There was no significant difference in generation time (T) of B. brassicae among the tested treatments. In the tolerance test, plants treated with PGPR alone or in integrated with humic acid had the highest tolerance against B. brassicae. The highest values of total phenol, flavonoids, and glucosinolates were observed in treatments of PGPR and humic acid + PGPR. Basing on the antibiosis and tolerance analyses in this study, we concluded that canola plants treated with PGPR are more resistant to B. brassicae. These findings could be useful for integrated pest management of B. brassicae in canola fields.


Author(s):  
İbrahim ERDAL ◽  
Zeliha KÜÇÜKYUMUK ◽  
Süleyman Sefik KURT ◽  
Murat DEĞİRMENCİ

Sign in / Sign up

Export Citation Format

Share Document