Flaxseed Oil-In-Water Emulsions Stabilized by Multilayer Membranes: Oxidative Stability and the Effects of pH

2016 ◽  
Vol 37 (12) ◽  
pp. 1683-1691 ◽  
Author(s):  
Canan Kartal ◽  
Mustafa Kemal Unal ◽  
Semih Otles
2021 ◽  
Author(s):  
Moumita Ray

With increasing consumer awareness and growing demand for healthier processed food options, there is an ever-present push for the incorporation of nourishing ingredients into foods. Many health-promoting ingredients, for example Omega-3 fats, are prone to rancidity and are insoluble in water. A current challenge facing the Ontario agri-food sector is the addition of such ingredients that can normally be added to fatty foods, but not into water-based foods such as many store-bought beverages. Furthermore, oils such as flaxseed oil are also very sensitive to oxidation when in the presence of light, heat or air, resulting in the formation of undesirable odours and flavours as well as loss in nutritional properties. The use of food emulsions is considered an attractive approach to preserve their healthfulness while minimizing rancidity. The overall goal of the present thesis was to incorporate soybean or flaxseed oil as micron-sized droplets within water-continuous emulsions using biopolymers derived from soy industrial processing waste to help ‘protect’ the oil from visual phase separation and coalescence as well as oxidative rancidity. To meet the goal, an extraction protocol to purify and concentrate the soy whey proteins (SWP) was initially developed. This was followed by establishing a method to increase the surface activity of the SWP via denaturation (dSWP). Subsequently, emulsions consisting of soybean oil or flaxseed oil prepared with dSWP and commercially-available soy soluble polysaccharides (SSPS) were analyzed for their kinetic and oxidative stability. Results clearly showed that the combination of dSWP and SSPS could: i) kinetically stabilize model oil-in-water emulsions against coalescence and phase separation more so than dSWP or SSPS alone and ii) effectively protect emulsions containing flaxseed oil from oxidative rancidity to a greater extent than a commonly-used emulsifier (polysorbate 20). Overall, this thesis yielded a novel method to emulsify and protect polyunsaturated oils using soy-based proteins and polysaccharides. The outcomes of this study offer the attractive potential of using soy-based ingredients from industrial waste in value-added food products such as beverage-type emulsions. Findings from this study may be applied to non-food products where there is a need for the development and stabilization of emulsions (e.g., pharmaceutical, cosmetics).


2019 ◽  
Vol 301 ◽  
pp. 125207 ◽  
Author(s):  
Chen Cheng ◽  
Xiao Yu ◽  
David Julian McClements ◽  
Qingde Huang ◽  
Hu Tang ◽  
...  

2021 ◽  
Author(s):  
Moumita Ray

With increasing consumer awareness and growing demand for healthier processed food options, there is an ever-present push for the incorporation of nourishing ingredients into foods. Many health-promoting ingredients, for example Omega-3 fats, are prone to rancidity and are insoluble in water. A current challenge facing the Ontario agri-food sector is the addition of such ingredients that can normally be added to fatty foods, but not into water-based foods such as many store-bought beverages. Furthermore, oils such as flaxseed oil are also very sensitive to oxidation when in the presence of light, heat or air, resulting in the formation of undesirable odours and flavours as well as loss in nutritional properties. The use of food emulsions is considered an attractive approach to preserve their healthfulness while minimizing rancidity. The overall goal of the present thesis was to incorporate soybean or flaxseed oil as micron-sized droplets within water-continuous emulsions using biopolymers derived from soy industrial processing waste to help ‘protect’ the oil from visual phase separation and coalescence as well as oxidative rancidity. To meet the goal, an extraction protocol to purify and concentrate the soy whey proteins (SWP) was initially developed. This was followed by establishing a method to increase the surface activity of the SWP via denaturation (dSWP). Subsequently, emulsions consisting of soybean oil or flaxseed oil prepared with dSWP and commercially-available soy soluble polysaccharides (SSPS) were analyzed for their kinetic and oxidative stability. Results clearly showed that the combination of dSWP and SSPS could: i) kinetically stabilize model oil-in-water emulsions against coalescence and phase separation more so than dSWP or SSPS alone and ii) effectively protect emulsions containing flaxseed oil from oxidative rancidity to a greater extent than a commonly-used emulsifier (polysorbate 20). Overall, this thesis yielded a novel method to emulsify and protect polyunsaturated oils using soy-based proteins and polysaccharides. The outcomes of this study offer the attractive potential of using soy-based ingredients from industrial waste in value-added food products such as beverage-type emulsions. Findings from this study may be applied to non-food products where there is a need for the development and stabilization of emulsions (e.g., pharmaceutical, cosmetics).


Antioxidants ◽  
2021 ◽  
Vol 10 (5) ◽  
pp. 785
Author(s):  
Dyana Odeh ◽  
Klara Kraljić ◽  
Andrea Benussi Skukan ◽  
Dubravka Škevin

In our study, we assessed whether the addition of basil, fennel, oregano, rosemary, and chili can improve oxidative stability and sensory properties of flaxseed oil (FO) during 180 days of storage or induce oil contamination by microorganisms. Results showed that addition of spices and herbs in FO affected the hydrolytic changes, but far less than 2% of free fatty acids after storage, which was in line with regulations. Further, the addition of spices and herbs in FO decreased peroxide value (even up to 68.7% in FO with oregano) vs. FO whose value increased during storage, indicating increased oxidative stability and prolongation of shelf life of infused oils. The antioxidant activity of the infused oils ranged from 56.40% to 97.66%. In addition, the phenol content was higher in all infused oils (6.81–22.92 mg/kg) vs. FO (5.44 mg/kg), indicating that herbs and spices could scavenge free radicals and inhibit lipid peroxidation, while sensory analysts showed that FO infused with chili had the lowest bitterness intensity. According to the presence of certain microorganisms, results highlighted the need to develop new methods for inactivating microorganisms that would not only provide a microbial safety, but also preserve the beneficial properties of the oils/products.


Polymers ◽  
2021 ◽  
Vol 13 (14) ◽  
pp. 2301
Author(s):  
Man Zhang ◽  
Bin Liang ◽  
Hongjun He ◽  
Changjian Ji ◽  
Tingting Cui ◽  
...  

Appropriate pretreatment of proteins and addition of xanthan gum (XG) has the potential to improve the stability of oil-in-water (O/W) emulsions. However, the factors that regulate the enhancement and the mechanism are still not clear, which restricts the realization of improving the emulsion stability by directional design of its structure. Therefore, the effects of whey protein micro-gel particles (WPMPs) and WPMPs-XG complexes on the stability of O/W emulsion were investigated in this article to provide theoretical support. WPMPs with different structures were prepared by pretreatment (controlled high-speed shear treatment of heat-set WPC gels) at pH 3.5–8.5. The impact of initial WPC structure and XG addition on Turbiscan Indexes, mean droplet size and the peroxide values of O/W emulsions was investigated. The results indicate that WPMPs and XG can respectively inhibit droplet coalescence and gravitational separation to improve the physical stability of WPC-stabilized O/W emulsions. The pretreatment significantly enhanced the oxidative stability of WPC-stabilized O/W emulsions. The addition of XG did not necessarily enhance the oxidative stability of O/W emulsions. Whether the oxidative stability of the O/W emulsion with XG is increased or decreased depends on the interface structure of the protein-XG complex. This study has significant implications for the development of novel structures containing lipid phases that are susceptible to oxidation.


Antioxidants ◽  
2021 ◽  
Vol 10 (2) ◽  
pp. 211
Author(s):  
Emilia Drozłowska ◽  
Artur Bartkowiak ◽  
Paulina Trocer ◽  
Mateusz Kostek ◽  
Alicja Tarnowiecka-Kuca ◽  
...  

The objective of the study was to investigate the application of flaxseed oil cake extract (FOCE) for oxidative stabilization of flaxseed oil in spray-dried emulsions. Two variants of powders with 10% and 20% of flaxseed oil (FO), FOCE, and wall material (maltodextrin and starch Capsul®) were produced by spray-drying process at 180 °C. The oxidative stability of FO was monitored during four weeks of storage at 4 °C by peroxide value (PV) and thiobarbituric acid-reactive substances (TBARS) measurements. Additionally, the fatty acids content (especially changes in α-linolenic acid content), radical scavenging activity, total polyphenolics content, color changes and free amino acids content were evaluated. Obtained results indicated that FOCE could be an adequate antioxidant dedicated for spray-dried emulsions, especially with a high content of FO (20%). These results have important implications for the flaxseed oil encapsulation with natural antioxidant agents obtained from plant-based agro-industrial by product, meeting the goals of circular economy and the idea of zero waste.


Sign in / Sign up

Export Citation Format

Share Document