Electricity transmission network optimization model of supply and demand – the case in Taiwan electricity transmission system

2006 ◽  
Vol 27 (2) ◽  
pp. 317-334
Author(s):  
Miao-Sheng Chen ◽  
Chien-Ku Liu ◽  
Sheng-Chuan Wang
2016 ◽  
Vol 2016 ◽  
pp. 1-12 ◽  
Author(s):  
Xing Zhao ◽  
Zhao-yan Feng ◽  
Yan Li ◽  
Antoine Bernard

Sometimes, the evacuation measure may seem to be the best choice as an emergency response. To enable an efficiency evacuation, a network optimization model which integrates lane-based reversal design and routing with intersection crossing conflict elimination for evacuation is constructed. The proposed bilevel model minimizes the total evacuation time to leave the evacuation zone. A tabu search algorithm is applied to find an optimal lane reversal plan in the upper-level. The lower-level utilizes a simulated annealing algorithm to get two types of “a single arc for an intersection approach” and “multiple arcs for an intersection approach” lane-based route plans with intersection crossing conflict elimination. An experiment of a nine-intersection evacuation zone illustrates the validity of the model and the algorithm. A field case with network topology of Jianye District around the Nanjing Olympics Sports Center is studied to show the applicability of this algorithm.


2020 ◽  
Vol 2020 ◽  
pp. 1-15
Author(s):  
Yonghong Liu ◽  
Yucheng Li ◽  
De Huang

Emergency rescue operations play a vital role in alleviating human suffering, reducing casualties, and cutting down economic losses. One key aspect in the management of these operations is the rational allocation of emergency relief materials, where the allocation is continuous, dynamic, and concurrent. This allocation should be made not only to minimize the emergency rescue losses, but also to reduce the cost of emergency rescue work. A reasonable and effective allocation scheme for emergency relief materials can be established to adapt to the continuity, dynamics, and concurrency of material distribution. In this work, we propose a multiobjective optimization model of emergency material allocation with continuous time-varying supply and demand constraints, where the objective is to minimize the losses and the economic cost incurred by the emergency rescue operations. The constrained optimization problem is handled through sequential unconstrained minimization techniques, and the multiobjective optimization is carried out by the fast nondominated sorting genetic algorithm (NSGA-II) with an elite strategy to obtain a Pareto solution set with fairness and balance of loss and cost. The loss and cost associated with the Pareto frontier are employed to find an appropriate noninferior solution and its corresponding material allocation scheme. We verify through several simulations the model feasibility and the effectiveness of the proposed method, which can provide decision support for continuous material allocation in emergency rescue operations.


Energies ◽  
2019 ◽  
Vol 12 (3) ◽  
pp. 419
Author(s):  
Mads Nannestad ◽  
Zhe Zhang ◽  
Jundi Jia ◽  
Emil Jensen ◽  
Peter Randewijk

This paper investigates the reactive power balance of the Zealand side of the Danish transmission system (DK2) by using QV-curves. The study is performed in cooperation with Energinet, who is the Danish transmission system operator (TSO). Firstly, this paper aims to map the reactive power balance with the current challenges in the system, which appears due to a decision of changing overhead lines in the scenic area to cables. Secondly, a method is derived for obtaining a comprehensive overview of the impacts that future projects might have on the system. By dividing the transmission system into smaller areas, it is possible to analyze how the reactive power will affect the voltage; moreover, it is favorable to analyze and handle the challenges in the reactive power balance locally. This helps the TSO to quickly determine the lack of reactive power devices and issues that might occur in future expansions of the system. For this paper, a full-scale model of DK2 and SCADA-data has been utilized. It covers the period from 01-01-2016 to 20-08-2017 between the TSO and the Distribution System Operator (DSO). The studies have shown how the location of the wind production will create issues in the reactive power balance.


2015 ◽  
Vol 1092-1093 ◽  
pp. 1289-1294
Author(s):  
Xin Wang ◽  
Jing Xu ◽  
Ke Kong ◽  
Lei Yan ◽  
Fang Wu

For the three big problems of water resources supply and demand contradiction, protection of groundwater environment and sediment over long distances in Xiaokai river irrigation area, the model of water utilization benefit maximization, groundwater level optimal control and the goal of sediment transport effect optimization model are established, and coupled into a multi-objective optimization model. The model is solved by using The delaminating sequence method, obtained the rational allocation plan of water resources in water years, and analyzing the rationality of the plan. The results show that, the scheme comprehensively considers the economic and environmental issues and has great reference value to promote sustainable development of irrigation area.


Sign in / Sign up

Export Citation Format

Share Document