Comparison of knee joint kinematics during a countermovement jump among different sports surfaces in male soccer players

2016 ◽  
Vol 1 (1) ◽  
pp. 74-79 ◽  
Author(s):  
Hossein Arianasab ◽  
Fariborz Mohammadipour ◽  
Mohammadtaghi Amiri-Khorasani
2021 ◽  
Vol 10 (3) ◽  
pp. 562-573
Author(s):  
Zahra Khazaee ◽  
◽  
Mehdi Gheitasi ◽  
Amir Hosein Barati ◽  
◽  
...  

Background and Aims: Since fatigue in different regions of the lower extremities can effectively alter the movement pattern of this part of the body and cause joint-related kinematic changes that increase the risk of injury and mental fatigue, which may be a factor in reducing productivity and injury. Therefore, the study of kinematic changes during fatigue can have helpful results. This study aimed to investigate the effect of lower extremity fatigue on knee joint kinematics during landing in adult soccer players. Methods: Ten adult male soccer players (Mean±SD = age: 20.7±1.05 years; Height: 178.9±4.17 cm; Weight: 71.55±8.04 kg) participated in this study. Subjects performed a pre-test, which included jumping and landing on a 40-cm box, and recording cameras of the valgus motion analyzer, flexion, and knee rotation. The Kingtools section of the plugin software attached to the Cortex software was used for segmentation and kinematic information. The lower extremity fatigue protocol consisted of 10 repetitions of single-leg squats up to 90 degrees of knee flexion, 20 vertical jumps with a single leg, and 1 repetition of step –going up and down a 31cm step. The Borg scale was used to measure fatigue. Before and after the fatigue protocol, a single-leg hop was used to determine the level of fatigue. After the fatigue protocol, a post-test was performed. Data were analyzed using the Shapiro-Wilk test for normality of the data, and paired t-test was used to compare mean in pre-test and post-test independent variables. Results: The paired t-test results for comparison of kinematic data showed that contact flexion had a significant difference from pre-test to post-test and other kinematic variables had no significant changes from pre-test to post-test. Statistical significance was considered at P≤0.05. Conclusion: According to the findings of this study, it can be concluded that lower extremity fatigue in the present study partly caused kinematic changes in predicting ACL injury. Kinematic changes have included a decrease in Contact flexion, which is one of the predictors of ACL injury during landing.


The Knee ◽  
2021 ◽  
Vol 29 ◽  
pp. 201-207
Author(s):  
Erik T. Hummer ◽  
Eryn N. Murphy ◽  
David N. Suprak ◽  
Lorrie R. Brilla ◽  
Jun G. San Juan

1977 ◽  
Vol 10 (10) ◽  
pp. 659-673 ◽  
Author(s):  
Richard P. Duke ◽  
James H. Somerset ◽  
Paul Blacharski ◽  
David G. Murray

Author(s):  
Susan M. Moore ◽  
Mary T. Gabriel ◽  
Maribeth Thomas ◽  
Jennifer Zeminski ◽  
Savio L.-Y. Woo ◽  
...  

Knowledge of joint kinematics contributes to the understanding of the function of soft tissue restraints, injury mechanisms, and can be used to evaluate surgical repair techniques. (Tibone, McMahon et al. 1998; Karduna, McClure et al. 2001; Abramowitch, Papageorgiou et al. 2003) Previous studies have measured joint kinematics using a variety of non-invasive methods that include: optical tracking, magnetic tracking, and mechanical linkage systems. (Rudins, Laskowski et al. 1997; Apreleva, Hasselman et al. 1998; Gabriel, Wong et al. 2004) These measurement devices report kinematics of rigid bodies with respect their own global coordinate system. However, it is often useful to understand these kinematics in terms of a coordinate system whose axes coincide with the degrees of freedom of each specific joint (anatomical coordinate systems). Once the kinematics are obtained with respect to the global coordinate system of the measurement device, the joint kinematics can be calculated with respect to anatomical coordinate systems if the relationship between the measurement device and the anatomical coordinate systems are known. Although the accuracy of these kinematic measurement devices is provided by the manufacturer, the effect of their accuracy on joint kinematics reported with respect to anatomical coordinate systems must be determined. (Panjabi, Goel et al. 1982; Crisco, Chen et al. 1994) For example, small errors in orientation of the measurement system could lead to large errors in position for an anatomical coordinate system located at some distance away. As researchers report joint kinematics with respect to the anatomical coordinate systems, understanding the errors produced by one’s measurement device with respect to the anatomical coordinate systems is necessary. Further, a great deal of interest exists for studying knee joint kinematics. (Sakane, Livesay et al. 1999; Lephart, Ferris et al. 2002; Ford, Myer et al. 2003) Within our research center our goal is to collect knee joint kinematics of a cadaver and reproduce them with respect to the anatomical coordinate systems using robotic technology. Therefore, the objective of this study was to determine the effect of the accuracy of three measurement devices (optical tracking device-OptoTrak® 3020, magnetic tracking device-Flock of Birds®, instrumented spatial linkage-EnduraTec Corp.) on knee joint kinematics reported with respect to an anatomical coordinate system.


Author(s):  
Massoud Akbarshahi ◽  
Justin W. Fernandez ◽  
Anthony Schache ◽  
Richard Baker ◽  
Marcus G. Pandy

The ability to accurately measure joint kinematics in vivo is of critical importance to researchers in the field of biomechanics [1]. Applications range from the quantitative evaluation of different surgical techniques, treatment methods and/or implant designs, to the development of computer-based models capable of simulating normal and pathological musculoskeletal conditions [1,2]. Currently, non-invasive marker-based three dimensional (3D) motion analysis is the most commonly used method for quantitative assessment of normal and pathological locomotion. The accuracy of this technique is influenced by movement of the soft tissues relative to the underlying bones, which causes inaccuracies in the determination of segmental anatomical coordinate systems and tracking of segmental motion. The purpose of this study was to quantify the errors in the measurement of knee-joint kinematics due solely to soft-tissue artifact (STA) in healthy subjects. To facilitate valid inter-subject comparisons of the kinematic data, relevant anatomical coordinate systems were defined using 3D bone models generated from magnetic resonance imaging (MRI).


PLoS ONE ◽  
2019 ◽  
Vol 14 (2) ◽  
pp. e0213084 ◽  
Author(s):  
Jing-Sheng Li ◽  
Tsung-Yuan Tsai ◽  
David T. Felson ◽  
Guoan Li ◽  
Cara L. Lewis

2017 ◽  
Vol 39 (01) ◽  
pp. 50-57 ◽  
Author(s):  
Melanie Lesinski ◽  
Olaf Prieske ◽  
Rainer Beurskens ◽  
David Behm ◽  
Urs Granacher

AbstractThe purpose of this study was to examine the combined effects of drop-height and surface condition on drop jump (DJ) performance and knee joint kinematics. DJ performance, sagittal and frontal plane knee joint kinematics were measured in jump experienced young male and female adults during DJs on stable, unstable and highly unstable surfaces using different drop-heights (20, 40, 60 cm). Findings revealed impaired DJ performance (Δ5–16%; p<0.05; 1.43≤d≤2.82), reduced knee valgus motion (Δ33–52%; p<0.001; 2.70≤d≤3.59), and larger maximum knee flexion angles (Δ13–19%; p<0.01; 1.74≤d≤1.75) when using higher (60 cm) compared to lower drop-heights (≤40 cm). Further, lower knee flexion angles and velocity were found (Δ8-16%; p<0.01; 1.49≤d≤2.38) with increasing surface instability. When performing DJs from high (60 cm) compared to moderate drop-heights (40 cm) on highly unstable surfaces, higher knee flexion velocity and maximum knee valgus angles were found (Δ15–19%; p<0.01; 1.50≤d≤1.53). No significant main and/or interaction effects were observed for the factor sex. In conclusion, knee motion strategies were modified by the factors ‘drop-height’ and/or ‘surface instability’. The combination of high drop-heights (>40 cm) together with highly unstable surfaces should be used cautiously during plyometrics because this may increase the risk of injury due to higher knee valgus stress.


Sign in / Sign up

Export Citation Format

Share Document