Microstructure and corrosion behaviour of WC/NiCrBSi coatings by vacuum cladding

Author(s):  
H.F. Zhang ◽  
C.H. Zhang ◽  
Z.Y. Wang ◽  
X. Cui ◽  
S. Zhang ◽  
...  
Author(s):  
J. Alias

Much research on magnesium (Mg) emphasises creating good corrosion resistance of magnesium, due to its high reactivity in most environments. In this study, powder metallurgy (PM) technique is used to produce Mg samples with a variation of aluminium (Al) composition. The effect of aluminium composition on the microstructure development, including the phase analysis was characterised by optical microscope (OM), scanning electron microscopy (SEM) and x-ray diffraction (XRD). The mechanical property of Mg sample was performed through Vickers microhardness. The results showed that the addition of aluminium in the synthesised Mg sample formed distribution of Al-rich phases of Mg17Al12, with 50 wt.% of aluminium content in the Mg sample exhibited larger fraction and distribution of Al-rich phases as compared to the 20 wt.% and 10 wt.% of aluminium content. The microhardness values were also increased at 20 wt.% and 50 wt.% of aluminium content, comparable to the standard microhardness value of the annealed Mg. A similar trend in corrosion resistance of the Mg immersed in 3.5 wt.% NaCl solution was observed. The corrosion behaviour was evaluated based on potentiodynamic polarisation behaviour. The corrosion current density, icorr, is observed to decrease with the increase of Al composition in the Mg sample, corresponding to the increase in corrosion resistance due to the formation of aluminium oxide layer on the Al-rich surface that acted as the corrosion barrier. Overall, the inclusion of aluminium in this study demonstrates the promising development of high corrosion resistant Mg alloys.


1989 ◽  
Vol 30 (9) ◽  
pp. 707-716 ◽  
Author(s):  
A. U. Malik ◽  
M. Ishaq ◽  
Sharif Ahmad ◽  
Sultan Ahmad

2008 ◽  
Vol 45 (7) ◽  
pp. 348-351
Author(s):  
Mohammed Misbahul Amin
Keyword(s):  
Palm Oil ◽  

2015 ◽  
Vol 39 (3-4) ◽  
pp. 167-174
Author(s):  
Michal Latkiewicz ◽  
Halina Krawiec ◽  
Vincent Vignal ◽  
Paulina Erazmus-Vignal

Author(s):  
Simona BOICIUC ◽  
◽  
◽  

The undertaken research which is described in this paper aims at the corrosion behaviour of composite coatings in nickel matrix using as dispersed phase technical alumina with dimensions of 5 μm and their characterization from a microstructural point of view. The corrosion resistance in the saline fog of the coatings is influenced by the microstructure, the stresses developed in the layer and the roughness.


2008 ◽  
Vol 59 (9) ◽  
Author(s):  
Dumitra Lucan ◽  
Manuela Fulger ◽  
Gheorghita Jinescu

The Steam Generators (SG), equipment that ensures the connection between the primary and secondary circuits, creates several safety problems during operation, mainly due to corrosion and mechanical damages. To provide information about the corrosion behaviour of the structural materials from CANDU SG under normal and abnormal conditions of operation and to identify the failure types produced by the corrosion were performed corrosion experiments consisting in chemical accelerated tests, static autoclaving and electrochemical methods. The gravimetric method, optical metallographic microscopy, XRD and EDS analysis, as well as electrochemical measurements have been used to evaluate the corrosion behavior of the steam generator tubes material (Incoloy-800).


2017 ◽  
Vol 68 (5) ◽  
pp. 1077-1080
Author(s):  
Krisztina Martha ◽  
Alexandru Ogodescu ◽  
Cristina Ioana Bica ◽  
Cristina Molnar Varlam

Almost all orthodontic wires suffer from corrosion as they are intra-orally engaged. This chemical structure alteration appears on the surface of these wires, surface topography can be easily visualised with scanning electron microscope method. The aim of our study was to assess the intraoral corrosion of the retrieved orthodontic Ni-Ti archwires. Archwire retrieval procedure yielded approximately 30 retrieved wires, placed intra-orally for 1-5 months. SEM analysis was performed and surface changes were interpreted. Our SEM results showed, that surface corrosion and pitting can be seen on the surface of retrieved Ni-Ti wires, the depth of corrosion depends on the time wires have been engaged in the oral cavity. With regards of metal liberation consequently surface corrosion, practitioners should be avare of these chemical changes which can affect the resistence of the orthodontic appliance and patient health.


Sign in / Sign up

Export Citation Format

Share Document