Getting to the Heart of the Brain: Using Cognitive Neuroscience to Explore the Nature of Human Ability and Performance

Roeper Review ◽  
2008 ◽  
Vol 30 (3) ◽  
pp. 162-170 ◽  
Author(s):  
M. Layne Kalbfleisch
2017 ◽  
Vol 29 (9) ◽  
pp. 1532-1546 ◽  
Author(s):  
Qiuhai Yue ◽  
Randi C. Martin ◽  
Simon Fischer-Baum ◽  
Aurora I. Ramos-Nuñez ◽  
Fengdan Ye ◽  
...  

Recent work in cognitive neuroscience has focused on analyzing the brain as a network, rather than as a collection of independent regions. Prior studies taking this approach have found that individual differences in the degree of modularity of the brain network relate to performance on cognitive tasks. However, inconsistent results concerning the direction of this relationship have been obtained, with some tasks showing better performance as modularity increases and other tasks showing worse performance. A recent theoretical model [Chen, M., & Deem, M. W. 2015. Development of modularity in the neural activity of children's brains. Physical Biology, 12, 016009] suggests that these inconsistencies may be explained on the grounds that high-modularity networks favor performance on simple tasks whereas low-modularity networks favor performance on more complex tasks. The current study tests these predictions by relating modularity from resting-state fMRI to performance on a set of simple and complex behavioral tasks. Complex and simple tasks were defined on the basis of whether they did or did not draw on executive attention. Consistent with predictions, we found a negative correlation between individuals' modularity and their performance on a composite measure combining scores from the complex tasks but a positive correlation with performance on a composite measure combining scores from the simple tasks. These results and theory presented here provide a framework for linking measures of whole-brain organization from network neuroscience to cognitive processing.


2017 ◽  
Author(s):  
Qiuhai Yue ◽  
Randi Martin ◽  
Simon Fischer-Baum ◽  
Aurora I. Ramos-Nuñez ◽  
Fengdan Ye ◽  
...  

AbstractRecent work in cognitive neuroscience has focused on analyzing the brain as a network, rather than as a collection of independent regions. Prior studies taking this approach have found that individual differences in the degree of modularity of the brain network relate to performance on cognitive tasks. However, inconsistent results concerning the direction of this relationship have been obtained, with some tasks showing better performance as modularity increases and other tasks showing worse performance. A recent theoretical model (Chen & Deem, 2015) suggests that these inconsistencies may be explained on the grounds that high-modularity networks favor performance on simple tasks whereas low-modularity networks favor performance on more complex tasks. The current study tests these predictions by relating modularity from resting-state fMRI to performance on a set of simple and complex behavioral tasks. Complex and simple tasks were defined on the basis of whether they did or did not draw on executive attention. Consistent with predictions, we found a negative correlation between individuals’ modularity and their performance on a composite measure combining scores from the complex tasks but a positive correlation with performance on a composite measure combining scores from the simple tasks. These results and theory presented here provide a framework for linking measures of whole brain organization from network neuroscience to cognitive processing.


Author(s):  
Edwin S. Dalmaijer ◽  
Alexander L. Anwyl-Irvine ◽  
Giacomo Bignardi ◽  
Olaf Hauk ◽  
Duncan E. Astle

Magnetoencephalography (MEG) is an exceptionally useful tool to study child development. It measures brain waves: fluctuations in the magnetic field around the head caused by changes in the local field potential of neuronal populations that fire in synchrony. MEG has a high-temporal resolution, and a reasonable degree of spatial precision. It offers insights into how the brain responds to events, how brain rhythms affect perception and performance, and how different areas talk to each other. In addition to its scientific benefits, MEG is safe, silent, and requires relatively little setup time. In this chapter, the authors outline the origins of the MEG signal, provide practical tips specific to testing children, and describe a wide variety of analysis methods.


2018 ◽  
Vol 48 (1) ◽  
pp. 150-159
Author(s):  
Jonathan M. P. Wilbiks ◽  
Sean Hutchins

In previous research, there exists some debate about the effects of musical training on memory for verbal material. The current research examines this relationship, while also considering musical training effects on memory for musical excerpts. Twenty individuals with musical training were tested and their results were compared to 20 age-matched individuals with no musical experience. Musically trained individuals demonstrated a higher level of memory for classical musical excerpts, with no significant differences for popular musical excerpts or for words. These findings are in support of previous research showing that while music and words overlap in terms of their processing in the brain, there is not necessarily a facilitative effect between training in one domain and performance in the other.


2012 ◽  
Vol 23 (12) ◽  
pp. 1455-1460 ◽  
Author(s):  
Lisa Legault ◽  
Timour Al-Khindi ◽  
Michael Inzlicht

Self-affirmation produces large effects: Even a simple reminder of one’s core values reduces defensiveness against threatening information. But how, exactly, does self-affirmation work? We explored this question by examining the impact of self-affirmation on neurophysiological responses to threatening events. We hypothesized that because self-affirmation increases openness to threat and enhances approachability of unfavorable feedback, it should augment attention and emotional receptivity to performance errors. We further hypothesized that this augmentation could be assessed directly, at the level of the brain. We measured self-affirmed and nonaffirmed participants’ electrophysiological responses to making errors on a task. As we anticipated, self-affirmation elicited greater error responsiveness than did nonaffirmation, as indexed by the error-related negativity, a neural signal of error monitoring. Self-affirmed participants also performed better on the task than did nonaffirmed participants. We offer novel brain evidence that self-affirmation increases openness to threat and discuss the role of error detection in the link between self-affirmation and performance.


2000 ◽  
Vol 23 (6) ◽  
pp. 793-842 ◽  
Author(s):  
J. Allan Hobson ◽  
Edward F. Pace-Schott ◽  
Robert Stickgold

Sleep researchers in different disciplines disagree about how fully dreaming can be explained in terms of brain physiology. Debate has focused on whether REM sleep dreaming is qualitatively different from nonREM (NREM) sleep and waking. A review of psychophysiological studies shows clear quantitative differences between REM and NREM mentation and between REM and waking mentation. Recent neuroimaging and neurophysiological studies also differentiate REM, NREM, and waking in features with phenomenological implications. Both evidence and theory suggest that there are isomorphisms between the phenomenology and the physiology of dreams. We present a three-dimensional model with specific examples from normally and abnormally changing conscious states.


Author(s):  
Ellen M. McGee

Transformations of humans through advances in bioelectronics, nanotechnologies, and computer science are leading to hybrids of humans and machines. Future brain-machine interfaces will enable humans not only to be constantly linked to the Internet, and to cyber think, but will also enable technology to take information directly from the brain. Brain-computer interfaces, where a chip is implanted in the brain, will facilitate a tremendous augmentation of human capacities, including the radical enhancement of the human ability to remember and to reason, and to achieve immortality through cloning and brain downloading, or existence in virtual reality. The ethical and legal issues raised by these possibilities represent global challenges. The most pressing concerns are those raised by privacy and autonomy. The potential exists for control of persons, through global tracking, by actually “seeing” and “hearing” what the individual is experiencing, and by controlling and directing an individual’s thoughts, emotions, moods, and motivations. Public dialogue must be initiated. New principles, agencies, and regulations need to be formulated and scientific organizations, states, countries, and the United Nations must all be involved.


2019 ◽  
pp. 179-216
Author(s):  
David Kemmerer

Ever since the 1980s, research on the cross-linguistic representation of spatial relations has burgeoned. Surprisingly, however, very little of this work has had any impact on cognitive neuroscience, and most researchers who study the cortical underpinnings of concrete conceptual knowledge have ignored spatial relations completely, preferring to focus on objects and actions instead. Due to this rather stark asymmetry, this chapter has a different organization than the previous two. The first section focuses entirely on cross-linguistic similarities and differences in the grammatical-semantic representation of three main types of spatial relations: topological, projective, and deictic. Then the last section addresses a number of neuroscientific issues, including a review of what has been learned so far about the implementation of these kinds of concepts in the brain, and a discussion of how the typological literature can both inspire and guide future research in this important but relatively neglected area of inquiry.


Sign in / Sign up

Export Citation Format

Share Document