Effects of crude resin extracts from Juniperus procera of different health and d.b.h status against a juniper pocket rot fungus, Pyrofomes demidoffii under in vitro conditions

Author(s):  
Addisu Assefa ◽  
Dawit Abate
Keyword(s):  
2021 ◽  
Author(s):  
Abdalrhaman Salih ◽  
Fahad Al Qurainy ◽  
Salim Khan ◽  
Mohamed Tarroum ◽  
Mohammad Nadeem ◽  
...  

Abstract Biosynthesized nanoparticles have played vital role recently, as suggested to be alternative to physical and chemical methods. In this study, biosynthesis of zinc oxide nanoparticles (ZnO NPs) were carried out using leaf extracts of Phoenix dactylifera and Zinc nitrate. The effect of ZnO nanoparticles on biomass and biochemical parameters was investigated. Biosynthesized ZnO nanostructure was characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), UV–visible spectrophotometer and Fourier transform infrared spectroscopy (FTIR). Which resulted in spherical shape with size ranging between 16 to 35 nm of Biosynthesized ZnO nanoparticles and UV absorption beak at 370.5 nm with clear peaks of functional groups. The impact of different concentrations (0.0 mg/L, 80 mg/L and 160 mg/L) of biosynthesized ZnO nanoparticles on biomass and bioactive compounds production of Juniperus Procera in vitro was investigated. The results showed that, biosynthesized ZnO NPs (80 mg /L and 160 mg/L) concentrations were boosted the growth of J. Procera with significantly compared to non-treated plants in vitro. The highest concentration (160mg/L) of ZnO NPs was enhanced the growth of plant at beginning period, one month later shoots became yellow and callus turned to be brownish. Moreover, the influence of ZnO NPs on phytochemical compounds in callus of Juniperus procera was examined using GC-MS analysis. The differences among treatments were recoded. Overall, zinc oxide nanoparticles substantially improved the growth of shoots and callus with increasing of biochemical parameters such as chlorophyll a, total phenolic and flavonoids contents, besides the total protein and, SOD, CAT and APX activity. ZnO NPs might be induced some phytochemical compounds as well as inhibit.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Abdalrhaman M. Salih ◽  
Fahad Al-Qurainy ◽  
Salim Khan ◽  
Mohamed Tarroum ◽  
Mohammad Nadeem ◽  
...  

AbstractBiosynthesized nanoparticles have played vital role recently, as suggested to be alternative to physical and chemical methods. In this study, biosynthesis of zinc oxide nanoparticles (ZnO NPs) were carried out using leaf extracts of Phoenix dactylifera L. and Zinc nitrate. The effect of ZnO nanoparticles on biomass and biochemical parameters was investigated. Biosynthesized ZnO nanostructure was characterized using X-ray diffraction (XRD), transmission electron microscopy (TEM), UV–visible spectrophotometer and Fourier transform infrared spectroscopy (FTIR). Which resulted in spherical shape with size ranging between 16 to 35 nm of Biosynthesized ZnO nanoparticles and UV absorption beak at 370.5 nm with clear peaks of functional groups. The impact of different concentrations (0.0 mg/L, 80 mg/L and 160 mg/L) of biosynthesized ZnO nanoparticles on biomass and bioactive compounds production of Juniperus procera in vitro was investigated. The results showed that, biosynthesized ZnO NPs (80 mg/L and 160 mg/L) concentrations were boosted the growth of J. Procera with significantly compared to non-treated plants in vitro. The highest concentration (160 mg/L) of ZnO NPs was enhanced the growth of plant at beginning period, one month later shoots became yellow and callus turned to be brownish. Moreover, the influence of ZnO NPs on phytochemical compounds in callus of Juniperus procera was examined using GC–MS analysis. The differences among treatments were recoded. Overall, zinc oxide nanoparticles substantially improved the growth of shoots and callus with increasing of biochemical parameters such as chlorophyll a, total phenolic and flavonoids contents, besides the total protein and, SOD, CAT and APX activity. ZnO NPs might be induced some phytochemical compounds as well as inhibit.


2021 ◽  
Vol 21 (1) ◽  
Author(s):  
Abdalrhaman M. Salih ◽  
Fahad Al-Qurainy ◽  
Salim Khan ◽  
Mohamed Tarroum ◽  
Mohammad Nadeem ◽  
...  

Abstract Background Juniperus procera Hoechst. ex Endl. is a medicinal tree in Saudi Arabia, primarily in the Enemas region, but it is locally threatened due to die-back disease and difficulties regarding seed reproduction (seed dormancy and underdeveloped embryonic anatomy, and germination rate < 40%). Hence, the alternative methods for reproduction of Juniperus procera are really needed for conservation and getting mass propagation for pharmaceutical uses. Results In this manuscript, we articulated the successful in vitro shoot multiplication and callus induction of J. procera by using young seedling as explants and detected an important antibacterial and antitumor product. Explants were grown on different types of media with the supplement of different combinations of Plant Growth Regulators (PGRs) at different concentrations. The best media for shoot multiplication was Woody Plant Media (WPM) supplemented with PGRs (0.5 μM of IAA and 0.5 μM BAP or 0.5 μM IBA and 0.5 μM BAP). Whereas for callus induction and formation Woody Plant Media (WPM) with the addition of PGRs (0.5 μM 2,4-D and 0.5 μM BAP) was better than the Chu Basal Salt Mixture (N6), Gamborg’s B-5 Basal Medium (B5), and Murashige and Skoog media. The possibility of multiplication of J. procera in vitro creates significant advantages to overcome the difficulties of seeds dormancy for the reproduction of plants, conservation of trees, and getting mass propagation material for pharmaceutical studies. The shoot and callus extract of J. procera was detected using gas chromatography-mass spectrometry analysis and revealed more than 20 compounds related to secondary metabolites, which contained antibacterial and antitumor agents, such as ferruginol, Retinol, and Quinolone as well as confirmed by Direct Analysis in Real Time, Time of Flight Mass Spectrometry (DART-ToF-MS). Podophyllotoxin (PTOX) was detected in callus material by HPLC with sigma standard and confirmed by DART-ToF-MS and UV spectra. Conclusion We successfully conducted in vitro shoot multiplication and callus induction from J. procera seedlings using WPM and a different combination of PGRs and, detected an important antibacterial and antitumor product such as ferruginol and podophyllotoxin. According to our findings, J. procera has become a new natural source of novel bioactive compounds.


Author(s):  
P.L. Moore

Previous freeze fracture results on the intact giant, amoeba Chaos carolinensis indicated the presence of a fibrillar arrangement of filaments within the cytoplasm. A complete interpretation of the three dimensional ultrastructure of these structures, and their possible role in amoeboid movement was not possible, since comparable results could not be obtained with conventional fixation of intact amoebae. Progress in interpreting the freeze fracture images of amoebae required a more thorough understanding of the different types of filaments present in amoebae, and of the ways in which they could be organized while remaining functional.The recent development of a calcium sensitive, demembranated, amoeboid model of Chaos carolinensis has made it possible to achieve a better understanding of such functional arrangements of amoeboid filaments. In these models the motility of demembranated cytoplasm can be controlled in vitro, and the chemical conditions necessary for contractility, and cytoplasmic streaming can be investigated. It is clear from these studies that “fibrils” exist in amoeboid models, and that they are capable of contracting along their length under conditions similar to those which cause contraction in vertebrate muscles.


Author(s):  
John J. Wolosewick ◽  
John H. D. Bryan

Early in spermiogenesis the manchette is rapidly assembled in a distal direction from the nuclear-ring-densities. The association of vesicles of smooth endoplasmic reticulum (SER) and the manchette microtubules (MTS) has been reported. In the mouse, osmophilic densities at the distal ends of the manchette are the organizing centers (MTOCS), and are associated with the SER. Rapid MT assembly and the lack of rough ER suggests that there is an existing pool of MT protein. Colcemid potentiates the reaction of vinblastine with tubulin and was used in this investigation to detect this protein.


Author(s):  
E. J. Kollar

The differentiation and maintenance of many specialized epithelial structures are dependent on the underlying connective tissue stroma and on an intact basal lamina. These requirements are especially stringent in the development and maintenance of the skin and oral mucosa. The keratinization patterns of thin or thick cornified layers as well as the appearance of specialized functional derivatives such as hair and teeth can be correlated with the specific source of stroma which supports these differentiated expressions.


Author(s):  
M. Kraemer ◽  
J. Foucrier ◽  
J. Vassy ◽  
M.T. Chalumeau

Some authors using immunofluorescent techniques had already suggested that some hepatocytes are able to synthetize several plasma proteins. In vitro studies on normal cells or on cells issued of murine hepatomas raise the same conclusion. These works could be indications of an hepatocyte functionnal non-specialization, meanwhile the authors never give direct topographic proofs suitable with this hypothesis.The use of immunoenzymatic techniques after obtention of monospecific antisera had seemed to us useful to bring forward a better knowledge of this problem. We have studied three carrier proteins (transferrin = Tf, hemopexin = Hx, albumin = Alb) operating at different levels in iron metabolism by demonstrating and localizing the adult rat hepatocytes involved in their synthesis.Immunological, histological and ultrastructural methods have been described in a previous work.


Author(s):  
Ann Chidester Van Orden ◽  
John L. Chidester ◽  
Anna C. Fraker ◽  
Pei Sung

The influence of small variations in the composition on the corrosion behavior of Co-Cr-Mo alloys has been studied using scanning electron microscopy (SEM), energy dispersive x-ray analysis (EDX), and electrochemical measurements. SEM and EDX data were correlated with data from in vitro corrosion measurements involving repassivation and also potentiostatic anodic polarization measurements. Specimens studied included the four alloys shown in Table 1. Corrosion tests were conducted in Hanks' physiological saline solution which has a pH of 7.4 and was held at a temperature of 37°C. Specimens were mechanically polished to a surface finish with 0.05 µm A1203, then exposed to the solution and anodically polarized at a rate of 0.006 v/min. All voltages were measured vs. the saturated calomel electrode (s.c.e.).. Specimens had breakdown potentials near 0.47V vs. s.c.e.


Sign in / Sign up

Export Citation Format

Share Document