scholarly journals Dynamics of Dislocation Densities in a Bounded Channel. Part II: Existence of Weak Solutions to a Singular Hamilton–Jacobi/Parabolic Strongly Coupled System

2009 ◽  
Vol 34 (8) ◽  
pp. 889-917 ◽  
Author(s):  
H. Ibrahim ◽  
M. Jazar ◽  
R. Monneau
2016 ◽  
Vol 5 (4) ◽  
Author(s):  
Luisa Consiglieri

AbstractThere are two main objectives in this paper. One is to find sufficient conditions to ensure the existence of weak solutions for some bidimensional thermoelectric problems. At the steady-state, these problems consist of a coupled system of elliptic equations of the divergence form, commonly accomplished with nonlinear radiation-type conditions on at least a nonempty part of the boundary of a


Complexity ◽  
2018 ◽  
Vol 2018 ◽  
pp. 1-6 ◽  
Author(s):  
A. M. A. El-Sayed ◽  
M. M. A. Al-Fadel

We study the existence of weak solutions for the coupled system of functional integral equations of Urysohn-Stieltjes type in the reflexive Banach spaceE. As an application, the coupled system of Hammerstien-Stieltjes functional integral equations is also studied.


2015 ◽  
Vol 2015 ◽  
pp. 1-11 ◽  
Author(s):  
G. M. de Araújo ◽  
M. A. F. de Araújo ◽  
E. F. L. Lucena

We investigate a problem for a model of a non-Newtonian micropolar fluid coupled system. The problem has been considered in a bounded, smooth domain ofR3with Dirichlet boundary conditions. The operator stress tensor is given byτ(e(u))=[(ν+ν0M(|e(u)|2))e(u)]. To prove the existence of weak solutions we use the method of Faedo-Galerkin and compactness arguments. Uniqueness and periodicity of solutions are also considered.


Author(s):  
Shohei Nakajima

AbstractWe prove existence of solutions and its properties for a one-dimensional stochastic partial differential equations with fractional Laplacian and non-Lipschitz coefficients. The method of proof is eatablished by Kolmogorov’s continuity theorem and tightness arguments.


2021 ◽  
Vol 2021 (1) ◽  
Author(s):  
Sujun Weng

AbstractWe study the existence of weak solutions to a Newtonian fluid∼non-Newtonian fluid mixed-type equation $$ {u_{t}}= \operatorname{div} \bigl(b(x,t){ \bigl\vert {\nabla A(u)} \bigr\vert ^{p(x) - 2}}\nabla A(u)+\alpha (x,t)\nabla A(u) \bigr)+f(u,x,t). $$ u t = div ( b ( x , t ) | ∇ A ( u ) | p ( x ) − 2 ∇ A ( u ) + α ( x , t ) ∇ A ( u ) ) + f ( u , x , t ) . We assume that $A'(s)=a(s)\geq 0$ A ′ ( s ) = a ( s ) ≥ 0 , $A(s)$ A ( s ) is a strictly increasing function, $A(0)=0$ A ( 0 ) = 0 , $b(x,t)\geq 0$ b ( x , t ) ≥ 0 , and $\alpha (x,t)\geq 0$ α ( x , t ) ≥ 0 . If $$ b(x,t)=\alpha (x,t)=0,\quad (x,t)\in \partial \Omega \times [0,T], $$ b ( x , t ) = α ( x , t ) = 0 , ( x , t ) ∈ ∂ Ω × [ 0 , T ] , then we prove the stability of weak solutions without the boundary value condition.


Sign in / Sign up

Export Citation Format

Share Document