scholarly journals Effects of Hydroxycinnamates and Exogenous Yeast Assimilable Nitrogen on Cider Aroma and Fermentation Performance

Author(s):  
Paulette Cairns ◽  
Leah Hamilton ◽  
Kathryn Racine ◽  
Katherine Phetxumphou ◽  
Sihui Ma ◽  
...  
2018 ◽  
Vol 83 (11) ◽  
pp. 2772-2781 ◽  
Author(s):  
Sihui Ma ◽  
Andrew Neilson ◽  
Jacob Lahne ◽  
Gregory Peck ◽  
Sean O'Keefe ◽  
...  

2020 ◽  
Vol 135 ◽  
pp. 109294
Author(s):  
Georgia Lytra ◽  
Cécile Miot-Sertier ◽  
Virginie Moine ◽  
Joana Coulon ◽  
Jean-Christophe Barbe

HortScience ◽  
2016 ◽  
Vol 51 (9) ◽  
pp. 1098-1102 ◽  
Author(s):  
Gregory Peck ◽  
Megan McGuire ◽  
Thomas Boudreau ◽  
Amanda Stewart

To assess the impact crop load has on hard cider chemistry, ‘York’ apple (Malus ×domestica Borkh.) trees were hand thinned to three different crop loads: low [two apples per cm2 branch cross-sectional area (BCSA)], medium (four apples per BCSA), and high (six apples per BCSA). Higher crop loads produced smaller, less acidic fruit that were slightly more mature. In juice made from fruit from these treatments, the total polyphenol content did not differ at harvest, but, after fermentation, the medium crop load had 27% and the high crop load had 37% greater total polyphenol content than the low crop load. Yeast assimilable nitrogen (YAN) concentration in juice made from fruit from the low crop load treatment had 18% and 22% greater than the medium and high crop load, respectively. YAN concentrations in juice from the medium and high crop load treatments were similar. Our results provide apple growers and hard cider producers with a better understanding of how apple crop load impacts YAN concentrations in juice and total polyphenol concentrations in juice and cider.


2000 ◽  
Vol 66 (10) ◽  
pp. 4187-4192 ◽  
Author(s):  
N. V. Narendranath ◽  
K. C. Thomas ◽  
W. M. Ingledew

ABSTRACT Urea hydrogen peroxide (UHP) at a concentration of 30 to 32 mmol/liter reduced the numbers of five Lactobacillus spp. (Lactobacillus plantarum, L. paracasei,Lactobacillus sp. strain 3, L. rhamnosus, andL. fermentum) from ∼107 to ∼102CFU/ml in a 2-h preincubation at 30°C of normal-gravity wheat mash at ∼21 g of dissolved solids per ml containing normal levels of suspended grain particles. Fermentation was completed 36 h after inoculation of Saccharomyces cerevisiae in the presence of UHP, even when wheat mash was deliberately contaminated (infected) withL. paracasei at ∼107 CFU/ml. There were no significant differences in the maximum ethanol produced between treatments when urea hydrogen peroxide was used to kill the bacteria and controls (in which no bacteria were added). However, the presence of L. paracasei at ∼107 CFU/ml without added agent resulted in a 5.84% reduction in the maximum ethanol produced compared to the control. The bactericidal activity of UHP is greatly affected by the presence of particulate matter. In fact, only 2 mmol of urea hydrogen peroxide per liter was required for disinfection when mashes had little or no particulate matter present. No significant differences were observed in the decomposition of hydrogen peroxide in normal-gravity wheat mash at 30°C whether the bactericidal agent was added as H2O2 or as urea hydrogen peroxide. NADH peroxidase activity (involved in degrading H2O2) increased significantly (P = 0.05) in the presence of 0.75 mM hydrogen peroxide (sublethal level) in all five strains of lactobacilli tested but did not persist in cells regrown in the absence of H2O2. H2O2-resistant mutants were not expected or found when lethal levels of H2O2 or UHP were used. Contaminating lactobacilli can be effectively managed by UHP, a compound which when used at ca. 30 mmol/liter happens to provide near-optimum levels of assimilable nitrogen and oxygen that aid in vigorous fermentation performance by yeast.


2017 ◽  
Vol 6 (1) ◽  
pp. 119-123 ◽  
Author(s):  
Thomas F. Boudreau ◽  
Gregory M. Peck ◽  
Sean F. O'Keefe ◽  
Amanda C. Stewart

HortScience ◽  
2020 ◽  
Vol 55 (8) ◽  
pp. 1345-1355
Author(s):  
Adam D. Karl ◽  
Michael G. Brown ◽  
Sihui Ma ◽  
Ann Sandbrook ◽  
Amanda C. Stewart ◽  
...  

The recent growth in the U.S. hard-cider industry has increased the demand for cider apples (Malus ×domestica Borkh.), but little is known about how to manage orchard soil fertility best to optimize horticultural performance and juice characteristics for these cultivars. To assess whether nitrogen fertilizer applied to the soil can improve apple juice and cider quality, calcium nitrate (CaNO3) fertilizer was applied at different rates to the soil beneath ‘Golden Russet’ and ‘Medaille d’Or’ trees over the course of three growing seasons. The experiment started when the trees were in their second leaf. The trees were cropped in their third and fourth leaf. At the end of the first growing season of the experiment, the greatest fertilizer rate increased tree trunk cross-sectional area (TCSA) by 82% relative to the control, but this difference did not persist through to the end of the study. Yield and crop load were unaffected by the nitrogen fertilization treatments. Increasing the nitrogen fertilizer rate correlated positively with more advanced harvest maturity in ‘Golden Russet’ fruit, which resulted in greater soluble solid concentration (SSC). Fruit from the greatest fertilizer rate treatment had an average starch pattern index (SPI) that was 1 U greater than in the control, and an SSC that was 3% greater than the control. The fertilizer treatments did not affect juice pH, titratable acidity (TA), or total polyphenol concentrations. Yeast assimilable nitrogen (YAN) concentrations were increased by nitrogen fertilization for both cultivars in both harvest years. The greatest fertilizer treatment increased juice primary amino nitrogen by 103% relative to the control. Greater nitrogen fertilization rates correlated positively with less hydrogen sulfide production during the fermentation of ‘Golden Russet’ juice from the first, but not the second, harvest. During the first year, cumulative hydrogen sulfide production for the ‘Golden Russet’ control treatment was 29.6 μg·L–1 compared with the ‘Golden Russet’ high treatment, which cumulatively produced 0.1 μg·L–1. Greater maximum fermentation rates and shorter fermentation durations correlated positively with increased fertilization rate for both cultivars after the second harvest. High treatment fermentations had maximum fermentation rates 110% greater, and fermentation durations 30% shorter than the control. Other horticultural and juice-quality parameters were not affected negatively by the CaNO3 treatments. In orchards producing apples specifically for the hard-cider industry, nitrogen fertilizer could increase juice YAN, thus reducing the need for exogenous additions during cider production.


Sign in / Sign up

Export Citation Format

Share Document