CMOS Implementation of a Novel High Speed 4:2 Compressor for Fast Arithmetic Circuits

2021 ◽  
pp. 1-8
Author(s):  
M. Ghasemzadeh ◽  
N. Mohabbatian ◽  
Kh. Hadidi

Adder Is Basic Unit For Any Digital System, Dsp And Microprocessor. The Main Issue In Design High Speed Full Adder Cell With The Low Power Dissipation. As We Know Cmos Technology Used For Vlsi Designing Cmos Has Many Drawbacks As High Power Short Channel Effect Etc. Then Cntfet (Carbon Nanotube Field Effect Transistor) Has Been Developed Which Has Same Structure As Cmos. The Difference Between Structure Of Cmos And Cntfet Is Their Channel. In Cntfet Channel Is Replaced By Carbon Nanotube. In This Paper We Compare Full Adder Circuit Using Cntfet With Gdi Technique And Cmos Implementation Of Adder Which Gdi Technique. Gdi Technique Is Used For Speed And Power Optimization In Digital Circuit. This Can Also Reduce The Count Of Transistor Which Affects The Size Of Device.


2020 ◽  
Vol 18 (03) ◽  
pp. 2050002
Author(s):  
Meysam Rashno ◽  
Majid Haghparast ◽  
Mohammad Mosleh

In recent years, there has been an increasing tendency towards designing circuits based on reversible logic, and has received much attention because of preventing internal power dissipation. In digital computing systems, multiplier circuits are one of the most fundamental and practical circuits used in the development of a wide range of hardware such as arithmetic circuits and Arithmetic Logic Unit (ALU). Vedic multiplier, which is based on Urdhva Tiryakbhayam (UT) algorithm, has many applications in circuit designing because of its high speed in performing multiplication compared to other multipliers. In Vedic multipliers, partial products are obtained through vertical and cross multiplication. In this paper, we propose four [Formula: see text] reversible Vedic multiplier blocks and use each one of them in its right place. Then, we propose a [Formula: see text] reversible Vedic multiplier using the four aforementioned multipliers. We prove that our design leads to better results in terms of quantum cost, number of constant inputs and number of garbage outputs, compared to the previous ones. We also expand our proposed design to [Formula: see text] multipliers which enable us to develop our proposed design in every dimension. Moreover, we propose a formula in order to calculate the quantum cost of our proposed [Formula: see text] reversible Vedic multiplier, which allows us to calculate the quantum cost even before designing the multiplier.


2013 ◽  
Vol 10 (21) ◽  
pp. 20130364-20130364 ◽  
Author(s):  
Mohammad Tohidi ◽  
Alireza Abolhasani ◽  
Khayrollah Hadidi ◽  
Abdollah Khoei

Sign in / Sign up

Export Citation Format

Share Document