scholarly journals Acute kidney injury in idiopathic nephrotic syndrome of childhood is a major risk factor for the development of chronic kidney disease

Renal Failure ◽  
2017 ◽  
Vol 39 (1) ◽  
pp. 323-327 ◽  
Author(s):  
Afshan Yaseen ◽  
Vina Tresa ◽  
Ali Asghar Lanewala ◽  
Seema Hashmi ◽  
Irshad Ali ◽  
...  
Blood ◽  
2017 ◽  
Vol 130 (Suppl_1) ◽  
pp. 686-686
Author(s):  
Santosh L. Saraf ◽  
Maya Viner ◽  
Ariel Rischall ◽  
Binal Shah ◽  
Xu Zhang ◽  
...  

Abstract Acute kidney injury (AKI) is associated with tubulointerstitial fibrosis and nephron loss and may lead to an increased risk for subsequently developing chronic kidney disease (CKD). In adults with sickle cell anemia (SCA), high rates of CKD have been consistently observed, although the incidence and risk factors for AKI are less clear. We evaluated the incidence of AKI, defined according to Kidney Disease Improving Global Outcomes (KDIGO) guidelines as a rise in serum creatinine by ≥0.3mg/dL within 48 hours or ≥1.5 times baseline within seven days, in 158 of 299 adult SCA patients enrolled in a longitudinal cohort from the University of Illinois at Chicago. These patients were selected based on the availability of genotyping for α-thalassemia, BCL11A rs1427407, APOL1 G1/G2, and the HMOX1 rs743811 and GT-repeat variants. Median values and interquartile range (IQR) are provided. With a median follow up time of 66 months (IQR, 51-74 months), 137 AKI events were observed in 63 (40%) SCA patients. AKI was most commonly observed in the following settings: acute chest syndrome (25%), an uncomplicated vaso-occlusive crisis (VOC)(24%), a VOC with pre-renal azotemia determined by a fractional excretion of sodium <1% or BUN-to-creatinine ratio >20:1 (14%), or a VOC with increased hemolysis, defined as an increase in serum LDH or indirect bilirubin level >1.5 times over the baseline value at the time of enrollment (12%). Compared to individuals who did not develop AKI, SCA adults who developed an AKI event were older (AKI: median and IQR age of 35 (26-46) years, no AKI: 28 (23 - 26) years; P=0.01) and had a lower estimated glomerular filtration rate (eGFR) (AKI: median and IQR eGFR of 123 (88-150) mL/min/1.73m2, no AKI: 141 (118-154) mL/min/1.73m2; P=0.02) by the Kruskal-Wallis test at the time of enrollment. We evaluated the association of a panel of candidate gene variants with the risk of developing an AKI event. These included loci related to the degree of hemolysis (α-thalassemia, BCL11A rs1427407), to chronic kidney disease (APOL1 G1/G2 risk variants), and to heme metabolism (HMOX1) . Using a logistic regression model that adjusted for age and eGFR at the time of enrollment, the risk of an AKI event was associated with older age (10-year OR 2.6, 95%CI 1.4-4.8, P=0.002), HMOX1 rs743811 (OR 3.1, 95%CI 1.1-8.7, P=0.03), and long HMOX1 GT-repeats, defined as >25 repeats (OR 2.5, 95%CI 1.01-6.1, P=0.04). Next, we assessed whether AKI is associated with a more rapid decline in eGFR and with CKD progression, defined as a 50% reduction in eGFR, on longitudinal follow up. Using a mixed effects model that adjusted for age and eGFR at the time of enrollment, the rate of eGFR decline was significantly greater in those with an AKI event (β = -0.51) vs. no AKI event (β = -0.16) (P=0.03). With a median follow up time of 66 months (IQR, 51-74 months), CKD progression was observed in 21% (13/61) of SCA patients with an AKI event versus 9% (8/88) without an AKI event. After adjusting for age and eGFR at the time of enrollment, the severity of an AKI event according to KDIGO guidelines (stage 1 if serum creatinine rises 1.5-1.9 times baseline, stage 2 if the rise is 2.0-2.9 times baseline, and stage 3 if the rise is ≥3 times baseline or ≥4.0 mg/dL or requires renal replacement therapy) was a risk factor for CKD progression (unadjusted HR 1.6, 95%CI 1.1-2.3, P=0.02; age- and eGFR-adjusted HR 1.6, 95%CI 1.1-2.5, P=0.03). In conclusion, AKI is commonly observed in adults with sickle cell anemia and is associated with increasing age and the HMOX1 GT-repeat and rs743811 polymorphisms. Furthermore, AKI may be associated with a steeper decline in kidney function and more severe AKI events may be a risk factor for subsequent CKD progression in SCA. Future studies understanding the mechanisms, consequences of AKI on long-term kidney function, and therapies to prevent AKI in SCA are warranted. Disclosures Gordeuk: Emmaus Life Sciences: Consultancy.


ESC CardioMed ◽  
2018 ◽  
pp. 2670-2673
Author(s):  
Susanna Price

Chronic kidney disease is a global health burden, with an estimated prevalence of 11–13%, with the majority of patients diagnosed as stage 3, and is an independent risk factor for cardiovascular disease. The incidence of acute kidney injury is increasing, and estimated to be present in one in five acute hospital admissions, and there is a bidirectional relationship between acute and chronic kidney disease. The relevance to the patient with cardiovascular disease relates to increased perioperative risk, as reduced kidney function is an independent risk factor for adverse postoperative cardiovascular outcomes including myocardial infarction, stroke, and progression of heart failure. Furthermore, patients undergoing cardiovascular investigations are at risk of developing acute kidney injury, in particular where iodinated contrast is administered. This chapter reviews the classification of renal disease and its impact on cardiovascular disease, as well as potential methods for reducing the development of contrast-induced acute kidney injury.


Introduction 632 Nutritional assessment 634 Malnutrition in renal disease 636 Nutritional considerations in chronic kidney disease 638 Nutrition in acute kidney injury 641 Nutrition in chronic kidney disease stages 3 and 4 642 Nephrotic syndrome 644 Nutritional requirements in dialysis 646 Nutritional requirements in haemodialysis ...


2018 ◽  
Vol 35 (4) ◽  
pp. 338-346 ◽  
Author(s):  
Stefan Büttner ◽  
Andrea Stadler ◽  
Christoph Mayer ◽  
Sammy Patyna ◽  
Christoph Betz ◽  
...  

Purpose: Acute kidney injury (AKI) is a severe complication in medical and surgical intensive care units accounting for a high morbidity and mortality. Incidence, risk factors, and prognostic impact of this deleterious condition are well established in this setting. Data concerning the neurocritically ill patients is scarce. Therefore, aim of this study was to determine the incidence of AKI and elucidate risk factors in this special population. Methods: Patients admitted to a specialized neurocritical care unit between 2005 and 2011 with a length of stay above 48 hours were analyzed retrospectively for incidence, cause, and outcome of AKI (AKI Network-stage ≥2). Results: The study population comprised 681 neurocritically ill patients from a mixed neurosurgical and neurological intensive care unit. The prevalence of chronic kidney disease (CKD) was 8.4% (57/681). Overall incidence of AKI was 11.6% with 36 (45.6%) patients developing dialysis-requiring AKI. Sepsis was the main cause of AKI in nearly 50% of patients. Acute kidney injury and renal replacement therapy are independent predictors of worse outcome (hazard ratio [HR]: 3.704; 95% confidence interval [CI]: 1.867-7.350; P < .001; and HR: 2.848; CI: 1.301-6.325; P = .009). Chronic kidney disease was the strongest independent risk factor (odds ratio: 12.473; CI: 5.944-26.172; P < .001), whereas surgical intervention or contrast agents were not associated with AKI. Conclusions: Acute kidney injury in neurocritical care has a high incidence and is a crucial risk factor for mortality independently of the underlying neurocritical condition. Sepsis is the main cause of AKI in this setting. Therefore, careful prevention of infectious complications and considering CKD in treatment decisions may lower the incidence of AKI and hereby improve outcome in neurocritical care.


Author(s):  
Ian B. Wilkinson ◽  
Tim Raine ◽  
Kate Wiles ◽  
Anna Goodhart ◽  
Catriona Hall ◽  
...  

This chapter discusses renal medicine, including urine, urinary tract infection (UTI), acute kidney injury (AKI), chronic kidney disease (CKD), renal replacement therapy (RRT), transplantation, glomerulonephritis, nephrotic syndrome, renal manifestations of systemic disease, renal tubule: disorders and diuretics, tubulointerstitial nephropathy and nephrotoxins, and inherited kidney disease.


2016 ◽  
Vol 6 (1) ◽  
pp. 0-0
Author(s):  
K Kozłowska ◽  
J. Małyszko

Malignancy or its treatment affect kidney in several ways. The most common are acute kidney injury and chronic kidney disease. Other form of kidney diseases can also be present such as nephrotic syndrome, tubulointerstitial nephritis, thrombotic microangipathy etc. In addition, electrolyte abnormalities such as hypercalcemia, hyponatremia and hypernatremia, hypokalemia and hyperkalemia, and hypomagnesemia. are observed. Treatment of malignancy associated kidney disease is usually symptomatic. Cessation of the offending agent or other supportive measures if needed i.e. renal replacement therapy are also implemented.


Sign in / Sign up

Export Citation Format

Share Document