Cooling effectiveness of matrix, pin fin array and hybrid structure: A comparative study

Author(s):  
Lianfeng Yang ◽  
Yigang Luan ◽  
Shi Bu ◽  
Haiou Sun ◽  
Franco Magagnato

In modern gas turbines, the trailing edge of turbine blades must be cooled by compact heat transfer structures. The basic problems in the design of cooling ducts include enhancing heat transfer, reducing pressure loss and obtaining uniform temperature distribution. The purpose is to improve energy efficiency and guarantee the engine lifespan. In this work, both experiment and numerical simulation are employed to study pressure drop and heat transfer of various kinds of cooling configurations. Pin fin array, matrix and hybrid structures are investigated in a comparative study. Thermochromic liquid crystal technique is applied to obtain heat transfer distribution on the channel surface. The results show that matrix creates much stronger heat transfer than pin fin array with increased pressure loss penalty. Performances of matrix structures are quite different due to the configurations (dense or sparse). Hybrid structures are always worse than the baseline matrix in terms of average thermal performance, due to the higher pressure loss, however, heat transfer can be improved. The performance of hybrid structure depends on the arrangement and diameter of the pin fins. Pin fins in central area provide not only larger pressure loss but also stronger heat transfer than pin fins near the bend region. Cases with larger diameter result in the thermal performance degradation. Compared with sparse matrix, the hybrid structures can compensate for the lower heat transfer enhancement. As for the dense hybrid structures, the average heat transfer capacity can be improved with reasonable pin fin arrangement.

Author(s):  
Jin Xu ◽  
Jiaxu Yao ◽  
Pengfei Su ◽  
Jiang Lei ◽  
Junmei Wu ◽  
...  

Convective heat transfer enhancement and pressure loss characteristics in a wide rectangular channel (AR = 4) with staggered pin fin arrays are investigated experimentally. Six sets of pin fins with the same nominal diameter (Dn = 8mm) are tested, including: Circular, Elliptic, Oblong, Dropform, NACA and Lancet. The relative spanwise pitch (S/Dn = 2) and streamwise pitch (X/Dn = 4.5) are kept the same for all six sets. Same nominal diameter and arrangement guarantee the same blockage area in the channel for each set. Reynolds number based on channel hydraulic diameter is from 10000 to 70000 with an increment of 10000. Using thermochromic liquid crystal (R40C20W), heat transfer coefficients on bottom surface of the channel are achieved. The obtained friction factor, Nusselt number and overall thermal performance are compared with the previously published data from other groups. The averaged Nusselt number of Circular pin fins is the largest in these six pin fins under different Re. Though Elliptic has a moderate level of Nusselt number, its pressure loss is next to the lowest. Elliptic pin fins have pretty good overall thermal performance in the tested Reynolds number range. When Re>40000, Lancet has a same level of performance as Circular, but its pressure loss is much lower than Circular. These two types are both promising alternative configuration to Circular pin fin used in gas turbine blade.


Author(s):  
Michael E. Lyall ◽  
Alan A. Thrift ◽  
Atul Kohli ◽  
Karen A. Thole

The performance of many engineering devices from power electronics to gas turbines is limited by thermal management. Heat transfer augmentation in internal flows is commonly achieved through the use of pin fins, which increase both surface area and turbulence. The present research is focused on internal cooling of turbine airfoils using a single row of circular pin fins that is oriented perpendicular to the flow. Low aspect ratio pin fins were studied whereby the channel height to pin diameter was unity. A number of spanwise spacings were investigated for a Reynolds number range between 5000 to 30,000. Both pressure drop and spatially-resolved heat transfer measurements were taken. The heat transfer measurements were made on the endwall of the pin fin array using infrared thermography and on the pin surface using discrete thermocouples. The results show that the heat transfer augmentation relative to open channel flow is the highest for smallest spanwise spacings and lowest Reynolds numbers. The results also indicate that the pin fin heat transfer is higher than the endwall heat transfer.


Author(s):  
W. D. Allan ◽  
S. A. Andrews ◽  
M. LaViolette

A six row pin-fin array was constructed with a spanwise spacing of 2.5 diameters, streamwise spacing of 1.5 diameters and a height to diameter ratio of 1. The streamwise stagger of alternate rows was continuously varied from fully in-line to fully staggered. Tests were carried out at Reynolds numbers of 2.7 × 104 and 2.3 × 104, corresponding to maximum velocities, in the low subsonic range, of 21 m/s and 18 m/s respectively. These results showed that the array averaged heat transfer was greatest from a fully staggered array and had a minimum at a stagger slightly greater than fully in-line. However, with increasing stagger, the array-averaged friction factor grew at a greater rate than the heat transfer. The ensuing analysis of the total array performance, considering both the magnitude of heat transfer and the losses within the array, showed that the fully in-line array had the highest ratio of heat transfer enhancement to friction factor enhancement. Therefore, if pressure loss was a design criterion, the fully in-line array was preferable. However, if pressure loss was not a constraint, then the staggered array was preferable.


Author(s):  
Stephen A. Andrews ◽  
William D. E. Allan

An experiment was conducted on the effects of streamwise stagger on heat transfer and pressure drop in a pin-fin array. The data were analyzed so as to highlight how stagger could be used to design a pin fin array for the lowest possible pressure loss. Design of arrays for low pressure loss is important in electronics cooling applications. They require large amounts of heat to be extracted from fixed areas, using a minimum of power to do so. This analysis found that the minimum friction factor occurred at a streamwise stagger of approximately 12% of the range between fully inline and fully staggered. By fixing the pin diameter, varying the stagger resulted in a 63% reduction in friction factor with only a 18% reduction in the Nusselt number, based on the array footprint. Additionally, it was found that for a fixed Nusselt number, the pin diameter could vary within a finite range, with decreasing diameters permitting arrays with more efficient degrees of stagger which continued to carry the required heating/cooling load.


2019 ◽  
Vol 29 (8) ◽  
pp. 2545-2565
Author(s):  
Safeer Hussain ◽  
Jian Liu ◽  
Lei Wang ◽  
Bengt Ake Sunden

Purpose The purpose of this paper is to enhance the heat transfer and thermal performance in the trailing edge region of the vane with vortex generators (VGs). Design/methodology/approach This numerical study presents the enhancement of thermal performance in the trailing part of a gas turbine blade. In the trailing part, generally, pin fins are used either in staggered or in-line arrangements to enhance the heat transfer. In this study, based on the idea from heat exchangers, pin fins are combined with VGs. A pair of VGs is embedded in the boundary layer upstream of each pin fin in the first row of the pin fin array having an in-line configuration. The effects of the VG angle relative to the streamwise direction and streamwise distance between the pin fin and VGs are investigated at various Reynolds numbers. Findings The results indicated that the endwall heat transfer is enhanced with the addition of VGs and the heat transfer from the surfaces of the pin fins. The level of heat transfer enhancement compared to the case without VGs is more significant at high Reynolds number. The surfaces of the VGs also show a significant amount of heat transfer. Study of the angle of the attack suggested that a high angle of attack is more appropriate for pin fin cooling enhancement whereas an intermediate gap between the VGs and pin fins shows considerable improvement of thermal performance compared to the small and large gaps. The phenomenon of heat transfer augmentation with the VGs is demonstrated by the flow field. It shows that the enhancement of heat transfer is governed by the mixing of the flow as a result of the interaction of vortices generated by the VGs and pin fins. Originality/value VGs are used to disturb the thermal boundary layer. It shows that heat transfer is augmented as a result of the interaction of vortices associated with VGs and pin fins.


Author(s):  
K. Takeishi ◽  
Y. Oda ◽  
Y. Miyake ◽  
Y. Motoda

Local endwall heat transfer characteristics and overall pressure loss of normal and inclined pin fins arrayed in rectangular ducts with flat and wavy endwalls have been investigated to improve the cooling efficiency of jet engine combustor liners. The detailed time-mean local Nusselt number profiles were measured using a naphthalene sublimation method based on the heat/mass transfer analogy. Four kinds of angled pin fins (−45, 0, and +45 degrees with a flat endwall, and −45 degrees with a wavy endwall) were tested and compared with each other. As a result, the average heat transfer coefficient on the flat endwall of normal pin fins was higher than that of the angled pin fins. The average heat transfer coefficient of −45-degree inclined pin fins with a wavy endwall is the same or a little higher than the heat transfer coefficient of those with a flat endwall; however, the pressure loss of the −45-degree inclined pin fins with a wavy endwall is less than the pressure loss of those with a flat endwall. Corresponding numerical simulations using Large Eddy Simulation (LES) with the Mixed Time Scale (MTS) model have been also conducted at Red = 1000 for fully developed regions, and the results have shown good quantitative agreement with mass transfer experiments. It can be concluded that wavy endwalls can realize better heat transfer with less pressure loss as long as the aim consists in enhancing endwall heat transfer in inclined pin-fin channels.


2017 ◽  
Vol 140 (1) ◽  
Author(s):  
Katharine K. Ferster ◽  
Kathryn L. Kirsch ◽  
Karen A. Thole

The demand for higher efficiency is ever present in the gas turbine field and can be achieved through many different approaches. While additively manufactured parts have only recently been introduced into the hot section of a gas turbine engine, the manufacturing technology shows promise for more widespread implementation since the process allows a designer to push the limits on capabilities of traditional machining and potentially impact turbine efficiencies. Pin fins are conventionally used in turbine airfoils to remove heat from locations in which high thermal and mechanical stresses are present. This study employs the benefits of additive manufacturing to make uniquely shaped pin fins, with the goal of increased performance over conventional cylindrical pin fin arrays. Triangular, star, and spherical shaped pin fins placed in microchannel test coupons were manufactured using direct metal laser sintering (DMLS). These coupons were experimentally investigated for pressure loss and heat transfer at a range of Reynolds numbers. Spacing, number of pin fins in the array, and pin fin geometry were variables that changed pressure loss and heat transfer in this study. Results indicate that the additively manufactured triangles and cylinders outperform conventional pin fin arrays, while stars and dimpled spheres did not.


Author(s):  
Oğuz Uzol ◽  
Cengiz Camci

Detailed experimental investigation of the wall heat transfer enhancement and total pressure loss characteristics for two alternative elliptical pin fin arrays is conducted and the results are compared to the conventional circular pin fin arrays. Two different elliptical pin fin geometries with different major axis lengths are tested, both having a minor axis length equal to the circular fin diameter and positioned at zero degrees angle of attack to the free stream flow. The major axis lengths for the two elliptical fins are 1.67 and 2.5 times the circular fin diameter, respectively. The pin fin arrays with H/D = 1.5 are positioned in a staggered 2 row configuration with 3 fins in the first row and 2 fins in the second row with S/D = X/D = 2. Endwall heat transfer and total pressure loss measurements are performed two diameter downstream of the pin fin arrays (X/D = 2) in a rectangular cross-section tunnel with an aspect ratio of 4.8 and for varying Reynolds numbers between 10000 and 47000 based on the inlet velocity and the fin diameter. Liquid Crystal Thermography is used for the measurement of convective heat transfer coefficient distributions on the endwall inside the wake. The results show that the wall heat transfer enhancement capability of the circular pin fin array is about 25–30% higher than the elliptical pin fin arrays in average. However in terms of total pressure loss, the circular pin fin arrays generate 100–200% more pressure loss than the elliptical pin fin arrays. This makes the elliptical fin arrays very promising cooling devices as an alternative to conventional circular pin fin arrays used in gas turbine blade cooling applications.


Author(s):  
Minking K. Chyu ◽  
Sean C. Siw ◽  
Hee Koo Moon

A pin-fin array is a compact heat exchanger and widely used for cooling of turbine airfoils. This study is to experimentally examine the effects of pin height or height-to-diameter ratio (H/D) on the heat transfer from a pin-fin array. The test models are designed to facilitate three different H/D ratios, from 2 to 4, with a staggered pin-fin array of inter-pin spacing 2.5 times the pin diameter (S/D = X/D = 2.5) in both longitudinal and transverse directions. The Reynolds number ranges from 10,000 to 30,000. The experiment uses a hybrid technique based on the transient liquid-crystal imaging to obtain detailed local heat transfer coefficients over both the pin-fin surface and endwalls. Overall array-averaged heat transfer increases with the H/D value or pin height. Most of the heat transfer contribution for H/D>2 comes from the pins rather than the endwall. However, higher H/D leads to a greater pressure loss. As a measure of heat transfer enhancement per pressure loss, H/D = 2 leads to the highest performance index and H/D = 4 is the lowest.


Author(s):  
Abubakar M. El-Jummah ◽  
Gordon E. Andrews ◽  
John E. J. Staggs

Conjugate heat transfer (CHT) computational fluid dynamics (CFD) predictions were carried out for impingement heat transfer with obstacle (fins) walls on the target surface midway between the impingement jets and aligned in the direction of the crossflow (direction of outflow of the impingement cooling air) to minimise the pressure loss increase due to the fins. A single sided flow exit was used in a geometry that was applicable to reverse flow cooling of low NOx combustors, but was also relevant to turbine blade and nozzle cooling. A 10 × 10 row of impingement jet holes (hole density n of 4306 m−2) was used, which had ten rows of holes in the cross-flow direction. One heat transfer enhancement obstacle per impingement jet was investigated and compared with previously published experimental results, for Nimonic 75 metal walls, for flow pressure loss and surface averaged heat transfer coefficients. Two different shaped obstacles were investigated with an impingement gap, Z, of 10mm: a continuous rectangular rib 4.5mm high (H) and 3.0 mm thick and a rectangular pin-fin rib with ten 8mm high (H) pins that were 8.6mm wide and 3.0 mm thick. The obstacles were equally spaced on the centreline between each row of impingement jets aligned with the crossflow. The impingement jet pitch to diameter X/D and gap to diameter Z/D ratios were kept constant at 4.66 and 3.06 for X, Z and D of 15.24, 10.00 and 3.27 mm, respectively. The two obstacles investigated had obstacle height to diameter ratio H/D of 1.38 and 2.45. The computations were carried out for three different air coolant mass fluxes G of 1.08, 1.48 and 1.94 kg/sm2bar. The pressure loss ΔP/P and surface average heat transfer coefficient (HTC) h predictions for all three G showed good agreement with the experimental results. The predicted results were also compared with the impingement jet single exit flow, for a smooth target wall of the same impingement hole configuration. A significant increase in the overall surface averaged heat transfer was predicted and measured for the co-flow configuration with rectangular pin-fins. This was a 20% improvement at low coolant flow rates for the rectangular pin fin obstacles and 15% for the ribs. At high coolant flow rates the improvement was smaller at 5% for the rectangular pin fins and 1% for the rectangular ribs.


Sign in / Sign up

Export Citation Format

Share Document