scholarly journals New synthesis of artepillin C, a prenylated phenol, utilizing lipase-catalyzed regioselective deacetylation as the key step

2015 ◽  
Vol 79 (12) ◽  
pp. 1926-1930 ◽  
Author(s):  
Kazuki Yashiro ◽  
Kengo Hanaya ◽  
Mitsuru Shoji ◽  
Takeshi Sugai
1996 ◽  
Vol 61 (26) ◽  
pp. 9635-9635
Author(s):  
Alicia Boto ◽  
Rosendo Hernández ◽  
Ernesto Suárez ◽  
Carmen Betancor ◽  
María S. Rodríguez

Synlett ◽  
1991 ◽  
Vol 1991 (04) ◽  
pp. 356-358 ◽  
Author(s):  
Bernd Burkhart ◽  
Steffen Krill ◽  
Yoshinori Okano ◽  
Wataru Ando ◽  
Manfred Regitz
Keyword(s):  

2016 ◽  
Vol 31 (5) ◽  
pp. 523
Author(s):  
MA Hong-Bing ◽  
BAI Hua ◽  
XUE Chen ◽  
TAO Peng-Fei ◽  
XU Qun-Feng ◽  
...  
Keyword(s):  

2015 ◽  
Vol 19 (13) ◽  
pp. 1292-1300 ◽  
Author(s):  
Amelia Diaz ◽  
J. Manuel Lopez–Romero ◽  
Rafael Contreras-Caceres ◽  
Manuel Algarra ◽  
Rodrigo Rico ◽  
...  

2019 ◽  
Vol 16 (12) ◽  
pp. 931-934 ◽  
Author(s):  
Alexandra Kamlah ◽  
Franz Bracher

: A new synthesis of the 2,6-naphthyridine alkaloid 4-methyl-2,6-naphthyridine from Antirrhinum majus has been developed. Key steps are a regioselective oxidation of 3-bromo-4,5- dimethylpyridine to the corresponding 4-formyl derivative, and the annulation of the second pyridine ring by Suzuki-Miyaura cross-coupling using (E)-2-ethoxyvinylboronic acid pinacol ester as a masked acetaldehyde equivalent. This protocol gives the alkaloid in four steps starting from commercially available 3,4-dimethylpyridine in 15% overall yield. This annulation protocol should be useful for the synthesis of other condensed pyridines as well.


2020 ◽  
Vol 17 (5) ◽  
pp. 382-388
Author(s):  
Aparna Wadhwa ◽  
Faraat Ali ◽  
Sana Parveen ◽  
Robin Kumar ◽  
Gyanendra N. Singh

Objective: The main aim of the present work is to synthesize chloramphenicol impurity A (CLRMIMP- A) in the purest form and its subsequent characterization by using a panel of sophisticated analytical techniques (LC-MS, DSC, TGA, NMR, FTIR, HPLC, and CHNS) to provide as a reference standard mentioned in most of the international compendiums, including IP, BP, USP, and EP. The present synthetic procedure has not been disclosed anywhere in the prior art. Methods: A simple, cheaper, and new synthesis method was described for the preparation of CLRM-IMP-A. It was synthesized and characterized by FTIR, DSC, TGA, NMR (1H and 13C), LC-MS, CHNS, and HPLC. Results: CLRM-IMP-A present in drugs and dosage form can alter the therapeutic effects and adverse reaction of a drug considerably, it is mandatory to have a precise method for the estimation of impurities to safeguard the public health. Under these circumstances, the presence of CLRM-IMP-A in chloramphenicol (CLRM) requires strict quality control to satisfy the specified regulatory limit. The synthetic impurity obtained was in the pure form to provide a certified reference standard or working standard to stakeholders with defined potency. Conclusion: The present research describes a novel technique for the synthesis of pharmacopoeial impurity, which can help in checking/controlling the quality of the CLRM in the international markets.


2019 ◽  
Vol 18 (12) ◽  
pp. 1750-1760 ◽  
Author(s):  
Raquel P. Souza ◽  
Patrícia S. Bonfim-Mendonça ◽  
Gabrielle M.Z.F. Damke ◽  
Analine R.B. de-Assis Carvalho ◽  
Bianca A. Ratti ◽  
...  

Background: Artepillin C (3,5-diprenyl-4-hydroxycinnamic acid) is the main bioactive component of Brazilian green propolis, and possesses, among other things, anticancer properties. However, to the best of our knowledge, there are no studies of artepillin C in cervical cancer. Method: To explore a new therapeutic candidate for cervical cancer, we have evaluated the effects of artepillin C on cellular viability in a comprehensive panel of human cervical cancer-derived cell lines including HeLa (human papillomavirus/HPV 18-positive), SiHa (HPV 16-positive), CaSki (HPV 16- and 18-positive) and C33A (HPV-negative) cells compared to a spontaneously immortalized human epithelial cell line (HaCaT). Results: Our results demonstrated that artepillin C had a selective effect on cellular viability and could induce apoptosis possibly by intrinsic pathway, likely a result of oxidative stress, in all cancer-derived cell lines but not in HaCaT. Additionally, artepillin C was able to inhibit the migration and invasion of cancer cells. Conclusion: Thus, artepillin C appears to be a promising new candidate as an anticancer drug for cervical cancer induced by different HPV types.


Sign in / Sign up

Export Citation Format

Share Document