Pathogenic Effects and Pathogenesis Processes in Vitro & in Vivo in Murine Cytomegalovirus Infected Rat Corneal Endothelial Cells

Author(s):  
Qing Lu ◽  
Bin-Jia Sun ◽  
Yue-Peng Zhou ◽  
Xuan Jiang ◽  
Rong-Mei Peng ◽  
...  
2021 ◽  
Author(s):  
Mohit Parekh ◽  
Hefin Rhys ◽  
Tiago Ramos ◽  
Stefano Ferrari ◽  
Sajjad Ahmad

Abstract Corneal endothelial cells (CEnCs) are a monolayer of hexagonal cells that are responsible for maintaining the function and transparency of the cornea. Damage or dysfunction of CEnCs could lead to blindness. Human CEnCs (HCEnCs) have shown limited proliferative capacity in vivo hence, their maintenance is crucial. Extracellular vesicles (EVs), are responsible for inter- and intra-cellular communication, proliferation, cell-differentiation, migration, and many other complex biological processes. Therefore, we investigated the effect of EVs (derived from human corneal endothelial cell line – HCEC-12) on corneal endothelial cells. HCEC-12 cells were starved with serum-depleted media for 72 hours. The media was ultracentrifuged at 100,000xg to isolate the EVs. EV counting, characterization, internalization and localization were performed using NanoSight, flow cytometry, Dil labelling and confocal microscopy respectively. HCEC-12 and HCEnCs were cultured with media supplemented with EVs. Extracted EVs showed a homogeneous mixture of exosomes and microvesicles. Cells with EVs decreased the proliferation rate; increased apoptosis and cell size; showed poor wound healing response in vitro and on ex vivo human, porcine, and rabbit CECs. Thirteen miRNAs were found in the EV sample using next generation sequencing. We observed that increased cellular uptake of EVs by CECs limit the proliferative capacity of HCEnCs. These preliminary data may help in understanding the pathology of corneal endothelial dysfunction and provide further insights in the development of future therapeutic treatment options.


2021 ◽  
Author(s):  
Rachelle N. Palchesko ◽  
Yiqin Du ◽  
Moira L. Geary ◽  
Santiago Carrasquilla ◽  
Daniel J. Shiwarski ◽  
...  

AbstractCell injection has emerged as a widespread approach for therapeutic delivery of healthy cells into diseased and damaged tissues to achieve regeneration. However, cell retention, viability and integration at the injection site has generally been poor, driving the need for improved approaches. Additionally, it is unknown how efficiently single cells can integrate and repair tissue level function. Here we have developed a technique to address these issues by engineering islands of interconnected cells on ECM nanoscaffolds that can be non-destructively released from the surface via thermal dissolution of the underlying thermo-responsive polymer. Upon dissolution of the polymer, the ECM nanoscaffold shrink-wraps around the small island of cells, creating a small patch of cells that maintain their cell-cell junctions and cytoskeletal structure throughout collection, centrifugation and injection that we have termed μMonolayers. These μMonolayers were made with corneal endothelial cells, as a model system, as single cell injections of corneal endothelial cells have been used with some success clinically to treat corneal blindness. In vitro our μMonolayers exhibited increased integration compared to single cells into low density corneal endothelial monolayers and in vivo into the high-density healthy rabbit corneal endothelium. These results indicate that this technique could be used to increase the integration of healthy cells into existing tissues to treat not only corneal blindness, but also other conditions such as cystic fibrosis, myocardial infarction, diabetes, etc.One Sentence SummarySmall monolayers of interconnected endothelial cells are shrinkwrapped in a thin layer of ECM and exhibit enhanced adhesion and integration in vivo compared to single cell suspensions.


2021 ◽  
Vol 12 ◽  
pp. 204173142199053
Author(s):  
Mohit Parekh ◽  
Vito Romano ◽  
Kareem Hassanin ◽  
Valeria Testa ◽  
Rintra Wongvisavavit ◽  
...  

The corneal endothelium is the posterior monolayer of cells that are responsible for maintaining overall transparency of the avascular corneal tissue via pump function. These cells are non-regenerative in vivo and therefore, approximately 40% of corneal transplants undertaken worldwide are a result of damage or dysfunction of endothelial cells. The number of available corneal donor tissues is limited worldwide, hence, cultivation of human corneal endothelial cells (hCECs) in vitro has been attempted in order to produce tissue engineered corneal endothelial grafts. Researchers have attempted to recreate the current gold standard treatment of replacing the endothelial layer with accompanying Descemet’s membrane or a small portion of stroma as support with tissue engineering strategies using various substrates of both biologically derived and synthetic origin. Here we review the potential biomaterials that are currently in development to support the transplantation of a cultured monolayer of hCECs.


2008 ◽  
Vol 49 (9) ◽  
pp. 3879 ◽  
Author(s):  
Ying-Ting Zhu ◽  
Yasutaka Hayashida ◽  
Ahmad Kheirkhah ◽  
Hua He ◽  
Szu-Yu Chen ◽  
...  

2010 ◽  
Vol 54 (3) ◽  
pp. 211-214 ◽  
Author(s):  
Shiro Amano ◽  
Yuichi Kaji ◽  
Tatsuya Mimura

1997 ◽  
Vol 77 (05) ◽  
pp. 0975-0980 ◽  
Author(s):  
Angel Gálvez ◽  
Goretti Gómez-Ortiz ◽  
Maribel Díaz-Ricart ◽  
Ginés Escolar ◽  
Rogelio González-Sarmiento ◽  
...  

SummaryThe effect of desmopressin (DDAVP) on thrombogenicity, expression of tissue factor and procoagulant activity (PCA) of extracellular matrix (ECM) generated by human umbilical vein endothelial cells cultures (HUVEC), was studied under different experimental conditions. HUVEC were incubated with DDAVP (1, 5 and 30 ng/ml) and then detached from their ECM. The reactivity towards platelets of this ECM was tested in a perfusion system. Coverslips covered with DD A VP-treated ECMs were inserted in a parallel-plate chamber and exposed to normal blood anticoagulated with low molecular weight heparin (Fragmin®, 20 U/ml). Perfusions were run for 5 min at a shear rate of 800 s1. Deposition of platelets on ECMs was significantly increased with respect to control ECMs when DDAVP was used at 5 and 30 ng/ml (p <0.05 and p <0.01 respectively). The increase in platelet deposition was prevented by incubation of ECMs with an antibody against human tissue factor prior to perfusion. Immunofluorescence studies positively detected tissue factor antigen on DDAVP derived ECMs. A chromogenic assay performed under standardized conditions revealed a statistically significant increase in the procoagulant activity of the ECMs produced by ECs incubated with 30 ng/ml DDAVP (p <0.01 vs. control samples). Northern blot analysis revealed increased levels of tissue factor mRNA in extracts from ECs exposed to DDAVP. Our data indicate that DDAVP in vitro enhances platelet adhesion to the ECMs through increased expression of tissue factor. A similar increase in the expression of tissue factor might contribute to the in vivo hemostatic effect of DDAVP.


1997 ◽  
Vol 77 (06) ◽  
pp. 1182-1188 ◽  
Author(s):  
Ulrich M Vischer ◽  
Claes B Wollheinn

Summaryvon Willebrand factor (vWf) is released from endothelial cell storage granules after stimulation with thrombin, histamine and several other agents that induce an increase in cytosolic free calcium ([Ca2+]i). In vivo, epinephrine and the vasopressin analog DDAVP increase vWf plasma levels, although they are thought not to induce vWf release from endothelial cells in vitro. Since these agents act via a cAMP-dependent pathway in responsive cells, we examined the role of cAMP in vWf secretion from cultured human umbilical vein endothelial cells. vWf release increased by 50% in response to forskolin, which activates adenylate cyclase. The response to forskolin was much stronger when cAMP degradation was blocked with IBMX, an inhibitor of phosphodiesterases (+200%), whereas IBMX alone had no effect. vWf release could also be induced by the cAMP analogs dibutyryl-cAMP (+40%) and 8-bromo-cAMP (+25%); although their effect was weak, they clearly potentiated the response to thrombin. Epinephrine (together with IBMX) caused a small, dose-dependent increase in vWf release, maximal at 10-6 M (+50%), and also potentiated the response to thrombin. This effect is mediated by adenylate cyclase-coupled β-adrenergic receptors, since it is inhibited by propranolol and mimicked by isoproterenol. In contrast to thrombin, neither forskolin nor epinephrine caused an increase in [Ca2+]j as measured by fura-2 fluorescence. In addition, the effects of forskolin and thrombin were additive, suggesting that they act through distinct signaling pathways. We found a close correlation between cellular cAMP content and vWf release after stimulation with epinephrine and forskolin. These results demonstrate that cAMP-dependent signaling events are involved in the control of exocytosis from endothelial cells (an effect not mediated by an increase in [Ca2+]i) and provide an explanation for epinephrine-induced vWf release.


Author(s):  
Susan Gallogly ◽  
Takeshi Fujisawa ◽  
John D. Hung ◽  
Mairi Brittan ◽  
Elizabeth M. Skinner ◽  
...  

Abstract Purpose Endothelial dysfunction is central to the pathogenesis of acute coronary syndrome. The study of diseased endothelium is very challenging due to inherent difficulties in isolating endothelial cells from the coronary vascular bed. We sought to isolate and characterise coronary endothelial cells from patients undergoing thrombectomy for myocardial infarction to develop a patient-specific in vitro model of endothelial dysfunction. Methods In a prospective cohort study, 49 patients underwent percutaneous coronary intervention with thrombus aspiration. Specimens were cultured, and coronary endothelial outgrowth (CEO) cells were isolated. CEO cells, endothelial cells isolated from peripheral blood, explanted coronary arteries, and umbilical veins were phenotyped and assessed functionally in vitro and in vivo. Results CEO cells were obtained from 27/37 (73%) atherothrombotic specimens and gave rise to cells with cobblestone morphology expressing CD146 (94 ± 6%), CD31 (87 ± 14%), and von Willebrand factor (100 ± 1%). Proliferation of CEO cells was impaired compared to both coronary artery and umbilical vein endothelial cells (population doubling time, 2.5 ± 1.0 versus 1.6 ± 0.3 and 1.2 ± 0.3 days, respectively). Cell migration was also reduced compared to umbilical vein endothelial cells (29 ± 20% versus 85±19%). Importantly, unlike control endothelial cells, dysfunctional CEO cells did not incorporate into new vessels or promote angiogenesis in vivo. Conclusions CEO cells can be reliably isolated and cultured from thrombectomy specimens in patients with acute coronary syndrome. Compared to controls, patient-derived coronary endothelial cells had impaired capacity to proliferate, migrate, and contribute to angiogenesis. CEO cells could be used to identify novel therapeutic targets to enhance endothelial function and prevent acute coronary syndromes.


Sign in / Sign up

Export Citation Format

Share Document