scholarly journals Inhibitory Effect of Ferulic Acid and Isoferulic Acid on the Production of Macrophage Inflammatory Protein-2 in Response to Respiratory Syncytial Virus Infection in RAW264.7 Cells

1999 ◽  
Vol 8 (3) ◽  
pp. 173-175 ◽  
Author(s):  
S. Sakai ◽  
H. Kawamata ◽  
T. Kogure ◽  
N. Mantani ◽  
K. Terasawa ◽  
...  

We investigated the effect of ferulic acid (FA) and isoferulic acid (IFA), which are the main active components of the rhizoma ofCimicifuga heracleifolia(CH), an anti-inflammatory drug used frequently in Japanese traditional medicine, on the production of macrophage inflammatory protein-2 (MIR-2) in a murine macrophage cell line, RAW264.7, in response to respiratory syncytial virus (RSV) infection. Following the exposure of cells to RSV for 20 h, the MIP-2 level in condition medium was increased to about 20 ng/ml, although this level in mock-infected cells was negligible. In the presence of either FA or IFA, RSV-infected cells reduced MIP-2 production in a dose-dependent manner. These data suggest that FA and IFA might be responsible, at least in part, for the anti-inflammatory drug effect of CH extract through the inhibition of MIP-2 production.

2002 ◽  
Vol 83 (4) ◽  
pp. 753-757 ◽  
Author(s):  
R. Ghildyal ◽  
J. Mills ◽  
M. Murray ◽  
N. Vardaxis ◽  
J. Meanger

Little is known about the functions of the matrix (M) protein of respiratory syncytial virus (RSV). By analogy with other negative-strand RNA viruses, the M protein should inhibit the viral polymerase prior to packaging and facilitate virion assembly. In this study, localization of the RSV M protein in infected cells and its association with the RSV nucleocapsid complex was investigated. RSV-infected cells were shown to contain characteristic cytoplasmic inclusions. Further analysis showed that these inclusions were localization sites of the M protein as well as the N, P, L and M2-1 proteins described previously. The M protein co-purified with viral ribonucleoproteins (RNPs) from RSV-infected cells. The transcriptase activity of purified RNPs was enhanced by treatment with antibodies to the M protein in a dose-dependent manner. These data suggest that the M protein is associated with RSV nucleocapsids and, like the matrix proteins of other negative-strand RNA viruses, can inhibit virus transcription.


1999 ◽  
Vol 277 (3) ◽  
pp. L498-L510 ◽  
Author(s):  
Janice A. Dye ◽  
Kenneth B. Adler ◽  
Judy H. Richards ◽  
Kevin L. Dreher

Particulate matter (PM) metal content and bioavailability have been hypothesized to play a role in the health effects epidemiologically associated with PM exposure, in particular that associated with emission source PM. Using rat tracheal epithelial cells in primary culture, the present study compared and contrasted the acute airway epithelial effects of an emission source particle, residual oil fly ash (ROFA), with that of its principal constitutive transition metals, namely iron, nickel, and vanadium. Over a 24-h period, exposure to ROFA, vanadium, or nickel plus vanadium, but not to iron or nickel, resulted in increased epithelial permeability, decreased cellular glutathione, cell detachment, and lytic cell injury. Treatment of vanadium-exposed cells with buthionine sulfoximine further increased cytotoxicity. Conversely, treatment with the radical scavenger dimethylthiourea inhibited the effects in a dose-dependent manner. RT-PCR analysis of RNA isolated from ROFA-exposed rat tracheal epithelial cells demonstrated significant macrophage inflammatory protein-2 and interleukin-6 gene expression as early as 6 h after exposure, whereas gene expression of inducible nitric oxide synthase was maximally increased 24 h postexposure. Again, vanadium (not nickel) appeared to be mediating the effects of ROFA on gene expression. Treatment with dimethylthiourea inhibited both ROFA- and vanadium-induced gene expression in a dose-dependent manner. Corresponding effects were observed in interleukin-6 and macrophage inflammatory protein-2 synthesis. In summary, generation of an oxidative stress was critical to induction of the ROFA- or vanadium-induced effects on airway epithelial gene expression, cytokine production, and cytotoxicity.


Viruses ◽  
2018 ◽  
Vol 10 (12) ◽  
pp. 690
Author(s):  
Ming-Kai Jhan ◽  
Ting-Jing Shen ◽  
Po-Chun Tseng ◽  
Yung-Ting Wang ◽  
Chiou-Feng Lin

The infection by dengue virus (DENV) of microglia causes cell activation and migration via a mechanism involving viral entry, RNA release, and Toll-like receptor 3 signaling. In this study, we demonstrated that secreted chemotactic factors present in microglial conditioned medium (MCM) facilitated cell motility in the murine BV2 microglial cells. The pharmacological disruption of lipid rafts/caveolae reduced DENV- and ultraviolet (UV)-inactivated MCM-induced microglial cell migration. An antibody-based cytokine/chemokine array showed an increase in macrophage inflammatory protein (MIP)-3β in MCM produced using DENV-infected cells. The pharmacological inhibition of c-Jun N-terminal kinase (JNK) retarded UV-MCM-induced microglial cell migration. These results demonstrate that secreted MIP-3β and its effect on the JNK signaling pathways mediates DENV-induced BV2 microglial cell migration.


2019 ◽  
Vol 86 (2) ◽  
pp. 171-176 ◽  
Author(s):  
Chenxu Zhao ◽  
Yazhou Wang ◽  
Xue Yuan ◽  
Guoquan Sun ◽  
Bingyu Shen ◽  
...  

AbstractSubacute ruminal acidosis (SARA) can increase the level of inflammation and induce rumenitis in dairy cows. Berberine (BBR) is the major active component of Rhizoma Coptidis, which is a type of Chinese anti-inflammatory drug for gastrointestinal diseases. The purpose of this study was to investigate the anti-inflammatory effects of BBR on lipopolysaccharide (LPS)-stimulated rumen epithelial cells (REC) and the underlying molecular mechanisms. REC were cultured and stimulated with LPS in the presence or absence of different concentrations of BBR. The results showed that cell viability was not affected by BBR. Moreover, BBR markedly decreased the concentrations and mRNA expression of pro-inflammatory cytokines, including tumor necrosis factor-α, interleukin-1β, and interleukin-6 in the LPS-treated REC in a dose-dependent manner. Importantly, Western blotting analysis showed that BBR significantly suppressed the protein expression of toll-like receptor 4 (TLR4) and myeloid differentiation primary response protein (MyD88) and the phosphorylation of nuclear factor-κB (NF-κB), inhibitory kappa B (IκBα), p38 mitogen-activated protein kinase (MAPK), and c-Jun N-terminal kinase (JNK) in LPS-treated REC. Furthermore, the results of immunocytofluorescence showed that BBR significantly inhibited the nuclear translocation of NF-κB p65 induced by LPS treatment. In conclusion, the protective effects of BBR on LPS-induced inflammatory responses in REC may be due to its ability to suppress the TLR4-mediated NF-κB and MAPK signaling pathways. These findings suggest that BBR can be used as an anti-inflammatory drug to treat inflammation induced by SARA.


Blood ◽  
2001 ◽  
Vol 97 (11) ◽  
pp. 3349-3353 ◽  
Author(s):  
Je-Ho Han ◽  
Sun Jin Choi ◽  
Noriyoshi Kurihara ◽  
Masanori Koide ◽  
Yasuo Oba ◽  
...  

A complementary DNA expression library derived from marrow samples from myeloma patients was recently screened and human macrophage inflammatory protein-1α (hMIP-1α) was identified as an osteoclastogenic factor expressed in these samples. hMIP-1α enhanced osteoclast (OCL) formation in human marrow cultures and by highly purified OCL precursors in a dose-dependent manner (5-200 pg/mL). Furthermore, hMIP-1α enhanced OCL formation induced by human interleukin-6 (IL-6), which is produced by marrow stromal cells when they interact with myeloma cells. hMIP-1α also enhanced OCL formation induced by parathyroid hormone-related protein (PTHrP) and receptor activator of nuclear factor κB ligand (RANKL), factors also implicated in myeloma bone disease. Time-course studies revealed that the hMIP-1α acted during the last 2 weeks of the 3-week culture period. Reverse transcription–polymerase chain reaction analysis showed that the chemokine receptors for hMIP-1α (CCR1 and CCR5) were expressed by human bone marrow and highly purified early OCL precursors. Furthermore, hMIP-1α did not increase expression of RANKL. These data demonstrate that hMIP-1α is an osteoclastogenic factor that appears to act directly on human OCL progenitors and acts at the later stages of OCL differentiation. These data further suggest that in patients with myeloma, MIP-1α produced by myeloma cells, in combination with RANKL and IL-6 that are produced by marrow stromal cells in response to myeloma cells, enhances OCL formation through their combined effects on OCL precursors.


1997 ◽  
Vol 94 (5) ◽  
pp. 1937-1942 ◽  
Author(s):  
N. M. Cirino ◽  
G. Li ◽  
W. Xiao ◽  
P. F. Torrence ◽  
R. H. Silverman

Sign in / Sign up

Export Citation Format

Share Document