A low‐pressure trunk injection system for the chemotherapy of clove trees

1985 ◽  
Vol 31 (2) ◽  
pp. 128-132 ◽  
Author(s):  
P. J. Martin ◽  
A. J. Dabek
PeerJ ◽  
2016 ◽  
Vol 4 ◽  
pp. e2480 ◽  
Author(s):  
Jun Huang ◽  
Juan Zhang ◽  
Yan Li ◽  
Jun Li ◽  
Xiao-Hua Shi

The screening of suitable insecticides is a key factor in successfully applying trunk injection technology to ornamental plants. In this study, six chemical pesticides were selected and injected into the trunks ofOsmanthus fragransto control the nettle caterpillar,Latoia lepida(Lepidoptera: Limacodidae), using a no-pressure injection system. The absorption rate of the insecticides, the leaf loss due to insect damage, and the mortality and frass amount ofL. lepidalarvae were evaluated after 77 and 429 days. The results showed that 4% imidacloprid + carbosulfan and 21% abamectin + imidacloprid + omethoate had the fastest conductivity and were completely absorbed into the trunkswithin14 days; however, the efficiencies of these insecticides in controllingL. lepidawere extremely low. Additionally, the treatment 10% emamectin benzoate + clothianidin and 2.5% emamectin benzoate was almost completely absorbed within 30 days and exhibited a longer duration of insecticide efficiency (>80% mortality) in the upper and lower leaves of the canopy. Treatment with these insecticides also resulted in significantly lower leaf loss and frass amounts. We conclude that emamectin benzoate and emamectin benzoate + clothianidin have a rapid uptake intoO. fragrans, and are effective as insecticides over long durations. Hence, they may be a suitable control option forL. lepidainO. fragransplants.


MTZ worldwide ◽  
2016 ◽  
Vol 77 (2) ◽  
pp. 56-61
Author(s):  
Michael Spitznagel ◽  
Uwe Iben ◽  
Ronny Leonhardt ◽  
Michael Bargende

2011 ◽  
Vol 228-229 ◽  
pp. 702-707 ◽  
Author(s):  
Jun Tao ◽  
Guang De Zhang

According to such properties of DME as high saturated vapor pressure, low viscosity and easy formation of mixture with air, a CPC (Controllable Premix Combustion) low-pressure common rail electrical control fuel injection test bench of DME engine is developed through this research. In addition, an overall design of the test system, hardware and software development of electrical control unit (ECU) and a test on the test bench are undertaken. The software of ECU is programmed by using real time modular programming. It has the advantages of flexible programming, convenient transplantation and wide extending possibility. Test results show that the injector switch timely, spray powerfully and pulverize perfectly. The software accomplishes many tasks such as signal acquisition as well as real-time control requirement of engine operation. Test result also shows the feasibility and good comprehensive performance of low-pressure common rail electronic system for DME fuel.


Author(s):  
Leonardo Nettis ◽  
Enzo Imparato ◽  
Lorenzo Cosi

Steam turbines are applied in production plants characterized by very large injections of low pressure steam. For this reason the design and optimization of the injection section is fundamental to obtain an adequate level of turbine efficiency and ensure uniform flow at the inlet of the low pressure stages downstream the injection. This paper illustrate the optimization performed on a Steam Turbine injection system for a unit in which injection flow is 80% of the total outlet mass flow. Optimization was performed varying the shape of the original steam guide with the twofold objective of minimizing the total pressure loss and uniform the circumferential flow distribution. The analysis has been performed using RANS 2D and 3D CFD solver. The design process has been structured in 3 different steps: i) Axisymmetric CFD screening based on DOE ii) 3D-CFD verification of the profile shape previously obtained with the additional estimation of the flow uniformity on 360° iii) 3D-CFD of the injection module including the reaction stage upstream and the first LP stage downstream, with the stator modeled on 360°. The main outcomes are presented in terms of total pressure loss and uniformity of circumferential flow, both strongly reduced with respect to the original design. Moreover in order to characterize the excitation associated with flow non-uniformity an analysis in the frequency domain of the flow distribution has been performed.


Author(s):  
Wang Yuqi ◽  
Yi Ke

Abstract After the loss of coolant accident (LOCA), the safety injection system injects water into the reactor coolant system (RCS), and the residual heat rejects from the break. The containment spray system is operating in recirculating cooling mode to ensure that the containment is cooldown. This state must be maintained for several months. After the accident, in order to respond the design extension conditions (DEC) of failure of two containment spray pumps or two low pressure safety injection pumps, the design of the original H4 connections was improved, and the H4 procedure (loss of containment spray pumps or low pressure safety injection pumps) was developed. H4 procedure demands to put into service 2 permanent (one for each train) interconnections of containment spray system and safety injection system, called “H4 connections”. Through the design improvement of the H4 connections, the mutual backup function of safety injection and containment spray can be realized implemented. The manual valves of the H4 connections in the original design were changed to electric valves, which ensured the accessibility of operator and avoided the radiation of high radioactivity level to operator after the accident. In addition, the improved H4 connections enable mutual backup of safety injection and containment spray in the early stage after the accident to be implemented, which fully improves the ability to respond to accidents and safety design level of the nuclear power plant (NPP). This also makes it possible to intervene early after the accident.


Sign in / Sign up

Export Citation Format

Share Document