Solid-state fermentation of co-products from palm oil processing: Production of lipase and xylanase and effects on chemical composition

2018 ◽  
Vol 36 (5) ◽  
pp. 381-388 ◽  
Author(s):  
Ana C. Oliveira ◽  
Graziella M. Amorim ◽  
José Augusto G. Azevêdo ◽  
Mateus G. Godoy ◽  
Denise M. G. Freire
Planta Medica ◽  
2013 ◽  
Vol 79 (13) ◽  
Author(s):  
G Juodeikiene ◽  
D Cizeikiene ◽  
A Maruška ◽  
E Bartkiene ◽  
L Basinskiene ◽  
...  

2000 ◽  
Vol 6 (3) ◽  
pp. 251-258 ◽  
Author(s):  
C. Reyes-Moreno ◽  
C.A. Romero-Urias ◽  
J. Milan-Carrillo ◽  
R.M. Gomez-Garza

Solid state fermentation (SSF) represents a technological alternative for a great variety of legumes and cereals, or combinations of them, to improve their nutritional quality and to obtain edible products with palatable sensorial characteristics. Chickpeas (Cicer arietinum L.) are prone to develop the hardening phenomenon, also known as hard-to-cook (HTC) defect, when stored under adverse conditions of high temperature (≥ 25 °C) and high relative humidity (≥ 65%). This hard-to-cook phenomenon causes increases in cooking time, decreases in nutritional quality and deterioration of sensorial attributes of chickpea. The objective of this work was to study the effect of SSF on chemical composition and nutritional quality of fresh and hardened chickpeas. The hardening of chickpea ( Cicer arietinum L. Blanco Sinaloa 92 variety) for human consumption, was produced by accelerated storage (33-35 °C, RH = 75%, 180 days). A Rhizopus stolonifer spore suspension (1 x 106 spores/mL) was used as starter for the fermentation. The temperature and time of the SSF process were 35.8 °C and 42.7 h, respectively. The tempeh was obtained from fresh and hardened chickpea. The SSF process caused a significant increase ( p ≤ 0.05) in crude protein, true protein (19.6-19.9 to 23.2-23.4%), protein solubility, in vitro digestibility (68.6-73.1% to 79.9-80.5%), available lysine (2.19-3.04 to 3.19-4.07 g lysine/ 16 N), palmitic acid, and stearic acid, and a significant decrease ( p ≤ 0.05) in lipids, minerals, linoleic acid, phytic acid (8.82-10.73 to 2.11 g phytic acid/g dry matter), and tannins (16.1-22.4 to 3 mg catechin/g dry matter). The SSF process improved significantly the quality of fresh and hardened chickpea.


2014 ◽  
Vol 13 (2) ◽  
pp. 264-272 ◽  
Author(s):  
Hong Sun ◽  
Xiaohong Yao ◽  
Xin Wang ◽  
Yifei Wu ◽  
Yong Liu ◽  
...  

2021 ◽  
Vol 41 (2) ◽  
pp. 81-85
Author(s):  
S. O. Omoikhoje ◽  
R. A. Animashaun ◽  
M. I. Edokpayi

This study was conducted to determine the effect of biodegradation on the nutrient contents of rice bran (RB), cassava residual pulp (CRP), saw dust (SD) and palm oil fibre (POF) by Penicilium sp. RB, CRP, SD and POF were subjected to solid state fermentation by Penicilium sp. for 7 days and the process was terminated by oven drying at 700C for 24hours. The fermented samples were thoroughly mixed, dried and stored in sterile bottles for analyses. Results of proximate composition before and after biodegradation revealed that percentage improvement in crude protein, ether extract, ash, and gross energy were significantly (P<0.05) higher in CRP compared to RB, SD and POF. Similarly, percentage reduction in crude fibre after biodegradation was highest (P><0.05) in CRP compared to other agro industrial wastes products. It was evident that solid state fermentation using Penicillium sp enhanced the crude protein value and reduced the crude fibre contents of rice bran, cassava residual pulp, saw dust and palm oil fibre thereby increasing nutrient availability and their utilization as feed alternative ingredients for farm animal nutrition. ><0.05) higher in CRP compared to RB, SD and POF. Similarly, percentage reduction in crude fibre after biodegradation was highest (P<0.05) in CRP compared to other agro industrial wastes products. It was evident that solid state fermentation using Penicillium sp enhanced the crude protein value and reduced the crude fibre contents of rice bran, cassava residual pulp, saw dust and palm oil fibre thereby increasing nutrient availability and their utilization as feed alternative ingredients for farm animal nutrition.><0.05) n CRP compared to other agro industrial wastes products. It was evident that solid state fermentation using Penicillium sp enhanced the crude protein value and reduced the crude fibre contents of rice bran, cassava residual pulp, saw dust and palm oil fibre thereby increasing nutrient availability and their utilization as feed alternative ingredients for farm animal nutrition.


2011 ◽  
Vol 166 (2) ◽  
pp. 348-364 ◽  
Author(s):  
Omar Ali Saied Moftah ◽  
Sanja Grbavčić ◽  
Milena Žuža ◽  
Nevena Luković ◽  
Dejan Bezbradica ◽  
...  

2018 ◽  
Vol 929 ◽  
pp. 209-217
Author(s):  
Rudi Hartono ◽  
Yessica S. Hannauli ◽  
Ambar Maresya ◽  
Muhamad Sahlan ◽  
Anondho Wijanarko ◽  
...  

Enzymes are used to make a production of biomass based process more efficient and more selective. Lipase is a biocatalyst in the breakdown of fat reaction that is widely used in the industry, including the industry in Indonesia. Lipase production can be carried out by bacterial solid state fermentation by using agro-industry waste substrate containing carbon and nitrogen. The developments of various industrial sectors are demanding the use and application of lipase commercially in industrial processes as biocatalysts chosen by its ability to work in a friendly environment and have high specificity. Fermentation of Aspergillus niger are able to produce enzyme lipase that can be done by using solid-state fermentation method. In this study palm oil empty fruit bunches (POEFB), bagasse, and palm oil sludge are used as fermentation substrates and will be treated variations of inducer concentration and fermentation time. The results of solid state fermentation of solid substrates POEFB with inducer concentration of 8% for 7 days showed the highest activity value of 2.2 U/mL and 8.2 U/mL in the form of dry extract lipase. The result of the dry lipase enzyme immobilized so that enzyme was stable in repetitive use with cross linking adsorption method using macroporous resin as a support. Experiments showed that empty fruit bunches of oil palm fermentation substrate could produce lipase enzyme with enzyme loading of 56.6% wt. Enzyme activity test carried out in the synthesis of biodiesel through interesterification reaction mole ratio of reactants palm oil and metal acetate 1:12 at 40°C operating temperature conditions for 50 hours in 4 reaction cycles. Biodiesel synthesis results were analyzed using High Perfomance Liquid Chromatography (HPLC) showed biodiesel yield values of 48.6% and the enzyme was able to move up to 68.60% initial yield of 4 cycles of biodiesel synthesis.


Sign in / Sign up

Export Citation Format

Share Document