Laboratory performance of asphalt mixture with waste tyre rubber and APAO modified asphalt binder

Author(s):  
Kezhen Yan ◽  
Shaoquan Wang ◽  
Dongdong Ge ◽  
Jinghao Chen ◽  
Shan Tian ◽  
...  
2011 ◽  
Vol 287-290 ◽  
pp. 1155-1163
Author(s):  
Shao Long Huang ◽  
Fan Shen ◽  
Qing Jun Ding

In this paper, recycled PE was added directly to the asphalt mixture to prepare high modulus asphalt mixture. To study the influence of the dosage and molecular weight of recycled PE on the performance of asphalt mixture, three kinds of recycled PE with different molecular weight and three asphalt binders (Conventional, SBS Modified and PE Modified) were used to prepare eight kinds of asphalt mixture. Various tests, including dynamic modulus, wheel tracking and Lottman test, were conducted to evaluate the performance of them. The results showed that 1) the dynamic modulus of asphalt mixture modified by recycled PE is higher than the normal mixture and mixture prepared with SBS modified asphalt binder; 2) adding recycled PE directly into the asphalt mixture during mixing is more effective than preparing asphalt mixture with PE modified asphalt binder in making high modulus asphalt mixture; 3) the recycled PE used to produce high modulus asphalt mixture should have certain big molecular weight, more than 27,000, and the dosage of recycled PE should be no less than 0.4% of the total weight of asphalt mixture. The performance tests indicted the good high temperature deformation resistance property of asphalt mixture modified by recycled PE.


2017 ◽  
Vol 2630 (1) ◽  
pp. 110-117 ◽  
Author(s):  
Matheus S. Gaspar ◽  
Kamilla L. Vasconcelos ◽  
Amanda H. M. da Silva ◽  
Liedi L. B. Bernucci

Reflective cracking is a common issue with respect to rehabilitated asphalt pavements, especially when the rehabilitation is done by applying a hot-mix asphalt overlay on the existing damaged pavement. Several approaches can be adopted to delay reflective cracking. They include an increase of the overlay thickness and the use of a stress relief asphalt mixture (SRAM), which is a fine-graded, flexible, and thin asphalt interlayer. Because the efficiency of a SRAM is highly related to the properties of the asphalt binder used in the mixture, it is of interest to use a highly modified asphalt (HiMA) binder. This paper describes a field test comprising three sections at BR-116 (a heavily trafficked highway in Brazil). One of the rehabilitation strategies used for a cracked asphalt pavement was a 2.5-cm SRAM (produced with a HiMA binder) and 5-cm styrene–butadiene–styrene (SBS) hot-mix asphalt (HMA). The other two strategies were to apply SBS HMA overlays of different thicknesses (7.5 cm and 10.5 cm). The aim was to evaluate and compare the capability of these solutions to control reflective cracking. Rheological properties and multiple stress creep and recovery tests were performed on the asphalt binders, and the semicircular bending test was performed on the asphalt mixtures. The surface conditions were monitored, and the results for each section were compared. After a 29-month period, the section that received the interlayer had the lowest cracked area and showed better resistance than the overlays did to reflective cracking and better maintenance of the original thickness of the pavement.


2012 ◽  
Vol 5 ◽  
pp. 259-264 ◽  
Author(s):  
Shang Jiang Chen ◽  
Xiao Ning Zhang

Nanomaterials (nano powdered rubber VP401, VP501 and sepiolite and CaCo3 composites) were selected to improve the high-temperature and low-temperature performance of asphalt binder. Nanomaterial modified asphalt was prepared using the high shear machine. Laboratory experiments of asphalt binder and asphalt mixture were conducted to evaluate the properties of modified asphalt binder, including the penetration, ductility, softening point, viscosity, and etc. Also, asphalt mixture tests were carried out, such as the cleavage strength test, resilient modulus test, rutting test, water stability test and etc. Based on the test results, asphalt binder modified by 1% nano powdered rubber VP401 has better performance resistance to low temperature crack and rutting, compared to other nanomaterial modified asphalt binder.


2019 ◽  
Vol 5 (9) ◽  
pp. 1929-1940
Author(s):  
Hussein Burhan Raof ◽  
Mohammed Qadir Ismael

The action of high repeated trucks load associated with dramatically elevated ambient temperatures leads to the most harmful distress in asphalt pavements occurred in Iraq known as rutting. Essentially, it is produced from the accumulation of irrecoverable strains, which mainly occurred in the asphalt layers. That visually demonstrated as a longitudinal depression in the wheel paths as well as small upheavals to the sides. Poly Phosphoric Acid (PPA) has been used as a means of producing modified asphalt binders and the interest to use it has increased in recent years. The PPA provides modified asphalt binder, which is relatively cheaply produced compared to polymer-modified asphalt. In this paper, PPA was used by three-percentages 1, 2 and 3 % of the weight of asphalt binder. Two asphalt binder grades were used in this study, 40-50 and 60 -70.  The evaluation process based on conducting Marshall Test, Compressive strength test and the Wheel Tracking test. The optimum asphalt content was determined for eight asphalt mixture. The results of the index of retained strength of modified asphalt were slightly increased compared with conventional mixtures. The rut depth was determined by using wheel tracking device at different temperature (45 and 55 ºC) for each asphalt mixture under 10000 cycles and the results showed that modified asphalt with PPA produced mixtures with more rutting resistance than conventional asphalt mixture. Moreover, the effect of PPA on rutting resistance for asphalt grade 60-70 was higher than asphalt grade 40-50.


2010 ◽  
Vol 168-170 ◽  
pp. 906-911
Author(s):  
Chuan Feng Zheng ◽  
Lei Wang ◽  
Da Jun Zhao

pavement performance of SEBS modified asphalt mixture are analyzed. Dynamic shear rhometer(DSR) experiments were performed to evaluate the rheology properties of SEBS modified asphalt binder and performance of SEBS modified asphalt mixture was evaluated based on laboratory experiments, experiments included: wheel tracking, moisture susceptibility, low-temperature beam bending and fatigue. The results shows that the rheology properties of SEBS modified asphalt binder are more ideal than SBS modified asphalt binder on anti-fatigue effect. Tensile stress ratio(TSR) of SEBS modified asphalt mixture increases 5.0%, tensile strength increases 6.1% and tensile strain increases 19.8%, though the dynamic stability(DS) decreases 3.1%, the fatigue life-span increases significantly compared with SBS modified asphalt mixture. It means that pavement performance of SEBS modified asphalt mixture is better than SBS modified asphalt mixture, and it is more applicable to be utilized in highway engineerings and some special engineerings such as bridge deck pavement that need anti-fatigue performance.


2020 ◽  
Vol 2020 ◽  
pp. 1-11
Author(s):  
Zhen Lu ◽  
Aimin Sha ◽  
Wentong Wang ◽  
Junfeng Gao

Sustainable materials in the field of road pavement have become a research direction in recent years. In this study, the rice husk ash with small dosage of styrene-butadiene-styrene (SBS) was added as a bioadditive into the base asphalt to modify its properties. Different contents (0, 2, 5, 10, and 15%) of rice husk ash (RHA) and 1% of SBS were selected to prepare the modified asphalt. Penetration, softening point, ductility, rotational viscosity test, and temperature sweep test were conducted to investigate the properties of SBS/RHA-modified asphalt binder. Rutting test, moisture susceptibility, and low-temperature cracking were utilized to evaluate the performances of SBS/RHA-modified asphalt mixture. The results showed that the penetration decreased and the softening point and rotational viscosity enhanced while the ductility slightly decreased with the incorporation of rice husk ash. The SBS/RHA-modified asphalt mixture had better high-temperature performance than that of the virgin asphalt mixture but slightly lower moisture stability and low temperature performance. The tensile strength ratio of the virgin and modified asphalt mixture met the requirement of specification. The tensile strain of mixture SR15 was lower than the requirement for the asphalt mixtures on the basis of the specification. For the SBS/RHA-modified asphalt binder based on the comprehensive properties, the content of rice husk ash should not be higher than 15%.


2015 ◽  
Vol 10 (2) ◽  
pp. 61-68 ◽  
Author(s):  
Marián Dubravský ◽  
Ján Mandula

Abstract In recent years, warm mix asphalt (WMA) is becoming more and more used in the asphalt industry. WMA provide a whole range of benefits, whether economic, environmental and ecological. Lower energy consumption and less pollution is the most advantages of this asphalt mixture. The paper deals with the addition of natural zeolite into the sub base asphalt layers, which is the essential constituent in the construction of the road. Measurement is focused on basic physic – mechanical properties declared according to the catalog data sheets. The aim of this article is to demonstrate the ability of addition the natural zeolite into the all asphalt layers of asphalt pavement. All asphalt mixtures were compared with reference asphalt mixture, which was prepared in reference temperature.


Sign in / Sign up

Export Citation Format

Share Document