About the Load-Carrying Capacity of Elastohydrodynamic Lubrication Film

2001 ◽  
Vol 44 (1) ◽  
pp. 1-10 ◽  
Author(s):  
Zhang Yongbin ◽  
Wen Shizhu ◽  
Wei Danping
Lubricants ◽  
2022 ◽  
Vol 10 (1) ◽  
pp. 12
Author(s):  
Yuechang Wang ◽  
Abdullah Azam ◽  
Gaolong Zhang ◽  
Abdel Dorgham ◽  
Ying Liu ◽  
...  

Experimental results have confirmed that parallel rough surfaces can be separated by a full fluid film. However, such a lift-off effect is not expected by the traditional Reynolds theory. This paper proposes a deterministic mixed lubrication model to understand the mechanism of the lift-off effect. The proposed model considered the interaction between asperities and the micro-elastohydrodynamic lubrication (micro-EHL) at asperities within parallel rough surfaces for the first time. The proposed model is verified by predicting the measured Stribeck curve taken from literature and experiments conducted in this work. The simulation results highlight that the micro-EHL effect at the asperity scale is critical in building load-carrying capacity between parallel rough surfaces. Finally, the drawbacks of the proposed model are addressed and the directions of future research are pointed out.


2019 ◽  
Vol 71 (3) ◽  
pp. 366-373
Author(s):  
Martin Zimmer ◽  
Dirk Bartel

Purpose The purpose of this paper is to determine parameters for an efficient running-in of gears and an improved method for the prediction of the tooth flank load carrying capacity. Design/methodology/approach In this contribution, a model for the calculation of the pitting life of involute spur gears is introduced, which is based on an extension of the life model according to Ioannides and Harris for rough surfaces. To achieve the most realistic thermal elastohydrodynamic lubrication simulation and stress calculation possible, measured real surfaces and elastic-plastic material properties of the area close to the surface are used. Special attention is paid to the compatibility of the fatigue life calculation for heterogeneous rough surfaces and their consistent consideration in the lifespan calculation. Findings A non-destructive running-in for twin-disc pairings can be performed using suitable operating parameters, which subsequently can be transferred to tooth flank tests. Using the extended life model according to Ioannides and Harris, an enhanced prediction of the tooth flank load carrying capacity is possible. Originality/value The developed extended life model includes a new numerical approach for calculating the tooth flank load carrying capacity. It has the potential to reliably support and hence to accelerate the design process of gears.


Author(s):  
Yongbin Zhang

The contact-lubricant interfacial slippage, near and in the inlet zone, significantly reduces the load-carrying capacity of elastohydrodynamic lubrication (EHL) in isothermal pure rolling line contacts under heavy loads. The EHL load-carrying capacity can be significantly improved by the prevention of this interfacial slippage. Equations are derived for predicting the critical interfacial limiting shear stress, which is the least for preventing this interfacial slippage. These equations can be used for designing the EHL system of which the load-carrying capacity is not reduced by this slippage.


Author(s):  
Hua-Ping Yao ◽  
Ping Huang

In the present paper, the load carrying mechanism of two parallel lubricated rough surfaces with relative motion is numerically analyzed from the microscopic view. It is found that each asperity of the surface forms mini-type convergent and divergent wedge sliders. The convergent wedge can create positive hydrodynamic pressure and forms a hydrodynamic lubrication film so that pressure is produced to bear an outside load. The Reynolds equation is used to analyze the influence of the roughness on the performances such as the pressure distribution, the load carrying capacity, the shearing force, the friction force and etc. The varying rules of the load carrying capacity and friction coefficient with the peak height of roughness are discussed in detail, and the influence of the minimum film thickness on lubrication state is also analyzed. The results indicate that under a given lubrication film thickness the load carrying capacity can achieve the maximum value and then decrease slowly with the peak height increasing, while the friction coefficient can achieve the minimum value. Furthermore, under the given condition of the peak height and 1 μm⩽h0⩽100 μm of the minimum film thickness the load carrying capacity drops down gradually, while the friction coefficient increases gradually with increase of the minimum film thickness.


2005 ◽  
Vol 10 (2) ◽  
pp. 151-160 ◽  
Author(s):  
J. Kala ◽  
Z. Kala

Authors of article analysed influence of variability of yield strength over cross-section of hot rolled steel member to its load-carrying capacity. In calculation models, the yield strength is usually taken as constant. But yield strength of a steel hot-rolled beam is generally a random quantity. Not only the whole beam but also its parts have slightly different material characteristics. According to the results of more accurate measurements, the statistical characteristics of the material taken from various cross-section points (e.g. from a web and a flange) are, however, more or less different. This variation is described by one dimensional random field. The load-carrying capacity of the beam IPE300 under bending moment at its ends with the lateral buckling influence included is analysed, nondimensional slenderness according to EC3 is λ¯ = 0.6. For this relatively low slender beam the influence of the yield strength on the load-carrying capacity is large. Also the influence of all the other imperfections as accurately as possible, the load-carrying capacity was determined by geometrically and materially nonlinear solution of very accurate FEM model by the ANSYS programme.


2005 ◽  
Vol 10 (1) ◽  
pp. 65-75 ◽  
Author(s):  
Z. Kala

The load-carrying capacity of the member with imperfections under axial compression is analysed in the present paper. The study is divided into two parts: (i) in the first one, the input parameters are considered to be random numbers (with distribution of probability functions obtained from experimental results and/or tolerance standard), while (ii) in the other one, the input parameters are considered to be fuzzy numbers (with membership functions). The load-carrying capacity was calculated by geometrical nonlinear solution of a beam by means of the finite element method. In the case (ii), the membership function was determined by applying the fuzzy sets, whereas in the case (i), the distribution probability function of load-carrying capacity was determined. For (i) stochastic solution, the numerical simulation Monte Carlo method was applied, whereas for (ii) fuzzy solution, the method of the so-called α cuts was applied. The design load-carrying capacity was determined according to the EC3 and EN1990 standards. The results of the fuzzy, stochastic and deterministic analyses are compared in the concluding part of the paper.


2005 ◽  
Vol 33 (4) ◽  
pp. 210-226 ◽  
Author(s):  
I. L. Al-Qadi ◽  
M. A. Elseifi ◽  
P. J. Yoo ◽  
I. Janajreh

Abstract The objective of this study was to quantify pavement damage due to a conventional (385/65R22.5) and a new generation of wide-base (445/50R22.5) tires using three-dimensional (3D) finite element (FE) analysis. The investigated new generation of wide-base tires has wider treads and greater load-carrying capacity than the conventional wide-base tire. In addition, the contact patch is less sensitive to loading and is especially designed to operate at 690kPa inflation pressure at 121km/hr speed for full load of 151kN tandem axle. The developed FE models simulated the tread sizes and applicable contact pressure for each tread and utilized laboratory-measured pavement material properties. In addition, the models were calibrated and properly validated using field-measured stresses and strains. Comparison was established between the two wide-base tire types and the dual-tire assembly. Results indicated that the 445/50R22.5 wide-base tire would cause more fatigue damage, approximately the same rutting damage and less surface-initiated top-down cracking than the conventional dual-tire assembly. On the other hand, the conventional 385/65R22.5 wide-base tire, which was introduced more than two decades ago, caused the most damage.


2020 ◽  
Vol 2020 (21) ◽  
pp. 146-153
Author(s):  
Anatolii Dekhtyar ◽  
◽  
Oleksandr Babkov ◽  

Sign in / Sign up

Export Citation Format

Share Document