Physical Thermomechanical Behavior in Machining an Aluminium Alloy (7075-O) Using Polycrystalline Diamond Tool

2011 ◽  
Vol 26 (8) ◽  
pp. 1034-1040 ◽  
Author(s):  
C. Maranhão ◽  
J. P. Davim ◽  
M. J. Jackson
2012 ◽  
Vol 516 ◽  
pp. 516-521
Author(s):  
Chung Chieh Cheng ◽  
Dong Yea Sheu

This study describes a novel process to drill small holes in brittle materials such as glass, silicon and ceramic using a self-elastic polycrystalline diamond (PCD) drilling tool. In order to improve the surface roughness and reduce crack of the small holes, a new type of self-elastic PCD drilling tool equipped with vibration absorbing materials inside the housing was developed to fabricate small holes in glass in this study. The self-elastic PCD drilling tools could absorb the mechanical force by the vibration absorbing materials while the PCD tool penetrates into the small holes. Compared to conventional PCD drilling tools, the experimental results show that high-quality small holes drilled in glass can be achieved with cracking as small as 0.02mm on the outlet surface using the self-elastic PCD drilling tool.


2008 ◽  
Vol 389-390 ◽  
pp. 350-355
Author(s):  
Takeshi Harada ◽  
Takuya Semba

A truing technique that can be used to shape the tip of an electroformed diamond tool into a hemisphere and flatten diamond grains on the tool working surface at the same level as the bond face was developed. A polycrystalline diamond disk whose top surface roughened by electrical discharge machining was partially flattened by grinding was used as a truer. Diamond grains on the tool working surface were successfully flattened along the hemispherical tool profile when the grains mesh size of #1000 was employed. In addition, a grinding test using glasslike carbon as a work material revealed that a surface roughness of less than 50 nm Rz could be obtained in both cases when moving the tool on contour and scanning paths.


Author(s):  
F J Ma ◽  
D M Guo ◽  
R K Kang ◽  
Y J Ren

It is usually hard to obtain a good surface quality of carbon/carbon (C/C) composite by turning due to its non-homogeneity and anisotropy. Contrasting experiments of ultrasonic assisted turning (UAT) and common turning (CT) of the C/C composite were carried out using a polycrystalline diamond tool. The cylindrical surface of the turning was classified into four typical types based on different fibre orientations. The influence of fibre distribution characteristics on surface roughness was analysed by measuring and comparing the roughness of these surfaces, and an evaluation method of surface quality for the C/C composite after turning was established. The results of UAT experiments on the C/C composite show that UAT could effectively reduce the machining defect. The roughness of typical surfaces 1 and 2 machined using UAT was about 20 per cent lower than that using CT.


2013 ◽  
Vol 7 (4) ◽  
pp. 433-438 ◽  
Author(s):  
Junsuke Fujiwara ◽  
◽  
Keisuke Wakao ◽  
Takeshi Miyamoto ◽  

The influence of the tungsten-carbide (WC) particle size and Co contents of cemented carbides on polycrystalline diamond tool wear during turning was investigated experimentally. The main results obtained were as follows. (1) Tool wear increased with increasing Co content. (2) It is important to cut off the binder between the WC particles and the Co. (3) Cemented carbides containing small WC particles are more effective than cemented carbides containing large particles.


2016 ◽  
Vol 10 (3) ◽  
pp. 411-419
Author(s):  
Abang Mohammad Nizam Abang Kamaruddin ◽  
◽  
Akira Hosokawa ◽  
Takashi Ueda ◽  
Tatsuaki Furumoto ◽  
...  

In this study, the tool performance of two types of binderless diamond tools – single-crystal diamond (SCD) and nano-polycrystalline diamond (NPD) – is investigated in the high-speed cutting of titanium alloy (Ti-6Al-4V) with a water-soluble coolant. The NPD tool allows for a larger cutting force than the SCD tool by dulling of the cutting edge, despite NPD being harder than SCD. This large cutting force and the very low thermal conductivity of NPD yield a high cutting temperature above 500°C, which promotes the adhesion of the workpiece to the tool face, thereby increasing tool wear. Based on the morphology of the tool edge without scratch marks and the elemental analysis by energy-dispersive X-ray spectroscopy (EDX) of both the flank face and the cutting chips, diffusion-dissolution wear is determined to be the dominant mechanism in the diamond tool. A thin TiC layer seems to be formed in the boundary between the diamond tool and the titanium alloy at high temperatures; this is removed by the cutting chips.


Sign in / Sign up

Export Citation Format

Share Document