scholarly journals Temporary, but Essential Requirement of CD8+T Cells Early in the Pathogenesis of Diabetes in BB Rats as Revealed by Thymectomy and CD8 Depletion

2003 ◽  
Vol 10 (2-4) ◽  
pp. 141-151 ◽  
Author(s):  
Herman Groen ◽  
Flip Klatter ◽  
Jennie Pater ◽  
Paul Nieuwenhuis ◽  
Jan Rozing

Autoimmunity-prone BB rats demonstrate a T lymphocytopenia and abnormal T cell subset distribution. To test whether the life span of all T cells or only of certain subsets is reduced in BB rats, we thymectomised 8-week-old BB and PVG rats and subsequently assessed size and composition of the T cell population over a 6-week-period. In both strains, thymectomy (Tx) was followed by a decrease in peripheral T cell numbers, which was proportionally larger in BB rats. The decline of the Thy-1+recent thymic migrant (RTM) T cell phenotype was similar in both strains. BB rats showed a rapid preferential loss of CD8+and CD45RC+T cells, whereas the relative loss of RT6+T cells was proportional to that of all T cells and not significantly different from that in PVG rats. Tx at 8-week did not prevent diabetes. Tx of 4-week-old BB rats revealed essentially the same changes in peripheral T cell subset distribution as in 8-week-old animals. However, Tx at week 4 did prevent diabetes. Since this raised the possibility of a temporary requirement of CD8+T cells for the development of diabetes, we performed CD8 depletions during different pre-diabetic intervals. We found that CD8 depletion from 4 to 8 and 4 to 14 weeks, but not from 8 to 14 weeks of age prevented diabetes. We conclude that the protective effect of early adult Tx is, at least in part, due to the rapid loss of CD8+T cells, and that these cells are only required between 4 and 8 weeks of age for diabetes to develop in BB rats.

2019 ◽  
Vol 10 ◽  
Author(s):  
Maria Kuznetsova ◽  
Julia Lopatnikova ◽  
Julia Shevchenko ◽  
Alexander Silkov ◽  
Amir Maksyutov ◽  
...  

2018 ◽  
Author(s):  
Shuhao Zhang ◽  
Shyamal Goswami ◽  
Jiaqiang Ma ◽  
Lu Meng ◽  
Youping Wang ◽  
...  

2015 ◽  
Vol 11 (3) ◽  
pp. e1004671 ◽  
Author(s):  
Krista E. van Meijgaarden ◽  
Mariëlle C. Haks ◽  
Nadia Caccamo ◽  
Francesco Dieli ◽  
Tom H. M. Ottenhoff ◽  
...  

1983 ◽  
Vol 158 (3) ◽  
pp. 649-669 ◽  
Author(s):  
H Kawanishi ◽  
L Saltzman ◽  
W Strober

Our previous studies indicated that cloned T cells obtained from Peyer's patches (PP) (Lyt-1+, 2-, Ia+, and H-2K/D+) evoked immunoglobulin (Ig) class switching of PP B cells from sIgM to sIgA cells in vitro; however, these switch T cells could not in themselves provide optimal help for the differentiation of postswitch sIgA-bearing PP B cells to IgA-secreting cells. Thus, in the present report we described studies focused on mechanisms regulating terminal differentiation of the postswitch PP sIgA-bearing B cells. First, to explore the effect of T cell-derived B cell differentiation factor(s) (BCDF) and macrophage factor(s) (MF) on the terminal maturation of PP B cells, LPS-stimulated PP B cells were co-cultured for 7 d with cloned T cells in the presence or absence of the above factors. In the absence of PP cloned T cells the BCDF and MF had only a modest effect on IgA production, whereas in the presence of PP, but not spleen cloned T cells, IgA production was increased. Next, to investigate the effect of T cells derived from a gut-associated lymphoid tissue (GALT), mesenteric lymph nodes (MLN), as well as from spleen on terminal differentiation of postswitch sIgA PP B cells, LPS-driven PP B cells were precultured with the cloned T cells to induce a switch to sIgA, and subsequently cultured with MLN or spleen T cells or a Lyt-2+-depleted T cell subset in the presence of a T-dependent polyclonal mitogen, staphylococcal protein A. Alternatively, in the second culture period BCDF alone was added, instead of T cells and protein A. Here it was found that B cells pre-exposed to switch T cells from PP, but not spleen, were induced to produce greatly increased amounts of IgA in the presence of protein A and T cells or a Lyt-2+-depleted T cell subset as well as in the presence of BCDF alone. Furthermore, in the presence of BCDF alone many B cells expressed cytoplasmic IgA. These observations strongly support the view that the terminal differentiation of postswitch sIgA B cells is governed by helper T cells and macrophages, or factors derived from such cells. Such cells or factors do not affect preswitch B cells.


1994 ◽  
Vol 179 (2) ◽  
pp. 413-424 ◽  
Author(s):  
G Dadaglio ◽  
S Garcia ◽  
L Montagnier ◽  
M L Gougeon

We have analyzed the V beta usage by CD4+ and CD8+ T cells from human immunodeficiency virus (HIV)-infected individuals in response to an in vitro stimulation with the superantigenic erythrogenic toxin A (ETA) of Streptococcus pyogenes. ETA amplifies specifically CD4+ and CD8+ T cells from control donors expressing the V beta 8 and the V beta 12 elements. When peripheral T cells from asymptomatic HIV-infected individuals were stimulated with ETA, there was a complete lack of activation of the V beta 8+ T cell subset, whereas the V beta 12+ T cell subset responded normally to the superantigen. This V beta-specific anergy, which was also observed in response to staphylococcal enterotoxin E (SEE), affected both CD4+ and CD8+ T cells and represented an intrinsic functional defect rather than a specific lack of response to bacterial superantigens since it was also observed after a stimulation with V beta 8 monoclonal antibodies. The V beta 8 anergic T cells did not express interleukin 2 receptors (IL-2Rs) and failed to proliferate in response to exogenous IL-2 or IL-4, suggesting that this anergy was not a reversible process, at least by the use of these cytokines. The unresponsiveness of the V beta 8 T cell subset is frequent since it was found in 56% of the patients studied, and comparison of the clinical status of responder vs. anergic patients indicated that the only known common factor between them was HIV infection. In addition, it is noteworthy that the anergy of the V beta 8 subset may be a very early phenomenon since it was found in a patient at Centers for Disease Control stage I of the disease. These data provide evidence that a dominant superantigen may be involved in the course of HIV infection and that the contribution of HIV has to be considered.


2021 ◽  
Vol 118 (23) ◽  
pp. e2103730118
Author(s):  
Yuka Nakajima ◽  
Kenji Chamoto ◽  
Takuma Oura ◽  
Tasuku Honjo

CD8+ T cells play a central role in antitumor immune responses that kill cancer cells directly. In aged individuals, CD8+ T cell immunity is strongly suppressed, which is associated with cancer and other age-related diseases. The mechanism underlying this age-related decrease in immune function remains largely unknown. This study investigated the role of T cell function in age-related unresponsiveness to PD-1 blockade cancer therapy. We found inefficient generation of CD44lowCD62Llow CD8+ T cell subset (P4) in draining lymph nodes of tumor-bearing aged mice. In vitro stimulation of naive CD8+ T cells first generated P4 cells, followed by effector/memory T cells. The P4 cells contained a unique set of genes related to enzymes involved in one-carbon (1C) metabolism, which is critical to antigen-specific T cell activation and mitochondrial function. Consistent with this finding, 1C-metabolism–related gene expression and mitochondrial respiration were down-regulated in aged CD8+ T cells compared with young CD8+ T cells. In aged OVA-specific T cell receptor (TCR) transgenic mice, ZAP-70 was not activated, even after inoculation with OVA-expressing tumor cells. The attenuation of TCR signaling appeared to be due to elevated expression of CD45RB phosphatase in aged CD8+ T cells. Surprisingly, strong stimulation by nonself cell injection into aged PD-1–deficient mice restored normal levels of CD45RB and ameliorated the emergence of P4 cells and 1C metabolic enzyme expression in CD8+ T cells, and antitumor activity. These findings indicate that impaired induction of the P4 subset may be responsible for the age-related resistance to PD-1 blockade, which can be rescued by strong TCR stimulation.


2018 ◽  
Vol 2 (15) ◽  
pp. 1889-1900 ◽  
Author(s):  
Kieu-Suong Le ◽  
Patricia Amé-Thomas ◽  
Karin Tarte ◽  
Françoise Gondois-Rey ◽  
Samuel Granjeaud ◽  
...  

Key Points A subset of CD8 T cells in some Hodgkin lymphomas shares phenotypic and functional features with CD4 TFH cells.


Cancers ◽  
2020 ◽  
Vol 12 (7) ◽  
pp. 1974 ◽  
Author(s):  
Linde Dekker ◽  
Coco de Koning ◽  
Caroline Lindemans ◽  
Stefan Nierkens

Allogeneic (allo) hematopoietic cell transplantation (HCT) is the only curative treatment option for patients suffering from chemotherapy-refractory or relapsed hematological malignancies. The occurrence of morbidity and mortality after allo-HCT is still high. This is partly correlated with the immunological recovery of the T cell subsets, of which the dynamics and relations to complications are still poorly understood. Detailed information on T cell subset recovery is crucial to provide tools for better prediction and modulation of adverse events. Here, we review the current knowledge regarding CD4+ and CD8+ T cells, γδ T cells, iNKT cells, Treg cells, MAIT cells and naive and memory T cell reconstitution, as well as their relations to outcome, considering different cell sources and immunosuppressive therapies. We conclude that the T cell subsets reconstitute in different ways and are associated with distinct adverse and beneficial events; however, adequate reconstitution of all the subsets is associated with better overall survival. Although the exact mechanisms involved in the reconstitution of each T cell subset and their associations with allo-HCT outcome need to be further elucidated, the data and suggestions presented here point towards the development of individualized approaches to improve their reconstitution. This includes the modulation of immunotherapeutic interventions based on more detailed immune monitoring, aiming to improve overall survival changes.


Author(s):  
Hannah Kaminski ◽  
Coline Ménard ◽  
Bouchra El Hayani ◽  
And-Nan Adjibabi ◽  
Gabriel Marsères ◽  
...  

Abstract Cytomegalovirus (CMV) is a major infectious cause of death and disease after transplantation. We have previously demonstrated that the tissue-associated adaptive Vδ2neg γδ T cells are key effectors responding to CMV and associated with recovery, contrasting with their innatelike circulating counterparts, the Vγ9posVδ2pos T cells that respond to phosphoantigens but not to CMV. A third Vγ9negVδ2pos subgroup with adaptive functions has been described in adults. In the current study, we demonstrate that these Vγ9negVδ2pos T cells are also components of the CMV immune response while presenting with distinct characteristics from Vδ2neg γδ T cells. In a cohort of kidney transplant recipients, CMV seropositivity was the unique clinical parameter associated with Vγ9negVδ2pos T-cell expansion and differentiation. Extensive phenotyping demonstrated their substantial cytotoxic potential and activation during acute CMV primary infection or reinfection. In vitro, Vγ9negVδ2pos T cells responded specifically to CMV-infected cells in a T-cell receptor–dependent manner and through strong interferon γ production. Finally, Vγ9negVδ2pos T cells were the only γδ T-cell subset in which expansion was tightly correlated with the severity of CMV disease. To conclude, our results identify a new player in the immune response against CMV and open interesting clinical perspectives for using Vγ9negVδ2pos T cells as an immune marker for CMV disease severity in immunocompromised patients.


Sign in / Sign up

Export Citation Format

Share Document