Assessment of Biochemical Constituents and Nutritional Aspects in Gracilariopsis persica and Hypnea flagelliformis

Author(s):  
Zahra Zarei Jeliani ◽  
Morteza Yousefzadi ◽  
Maryam Kokabi ◽  
Mona Sorahinobar ◽  
Iman Sourinejad ◽  
...  
2010 ◽  
Vol 9 (1) ◽  
pp. 133-140
Author(s):  
Petrisor Zamora Iordache ◽  
Nicoleta Petrea ◽  
Vasile Somoghi ◽  
Mihaela Muresan ◽  
Gabriel Epure ◽  
...  

Author(s):  
P. R. Chavelikar ◽  
G. and Neha Rao C. Mandali ◽  
Neha Rao

Ruminal acidosis is an important clinical emergency in small ruminants. In this study, eight healthy farm goats and 24 goats presented at TVCC of the college of Veterinary Sciences and A.H., Anand with clinical signs of ruminal acidosis and having rumen liquor pH below 6 were examined for alterations in the ruminal fluid and serum biochemical parameters. Among various rumen fluid parameters evaluated, the mean values of rumen fluid pH decreased significantly (4.71±0.11 vs. 6.90±0.10), while sediment activity time (46.67±1.20 vs. 24.50±0.78 min) and methylene blue reduction time (29.50±0.73 vs. 10.03±0.27 min) increased significantly in acidotic goats. The normal greenish, aromatic viscous color, odour and consistency of rumen fluid of healthy goats also changed to milky grey/creamy, sour/pungent watery in acidotic goats. The rumen protozoal activity decreased to nil in acidotic goats as compared to the healthy goats. Among various serum biochemical constituents, the mean values of glucose (92.43±1.37 vs. 74.13±1.83 mg/dl), BUN (26.49±0.47 vs. 22.63±1.19 mg/dl), serum creatinine (01.01±0.02 vs. 00.83±0.02 mg/dl) and albumin (03.22±0.03 vs. 03.05±0.05 g/dl), ALT (56.75±1.55 vs. 27.88±1.14 IU/L) and AST (93.25±1.82 vs. 54.00±1.75 IU/L), increased significantly, while there was significant decrease in serum calcium (09.09±0.14 vs. 10.29±0.08 mg/dl) in acidotic goats. The mean values of alkaline phosphatase (IU/L) in acidotic goats increased non-significantly from the base values of healthy goats.


2021 ◽  
Author(s):  
Rupali Sharma ◽  
Hukum Singh

Abstract Human-induced CO2 emissions since the preindustrial era have accumulated CO2 in the atmosphere which has influenced the plant structure and function including bio-chemical constituents of the plant system. The Himalayan vegetation has been predicted to be more vulnerable and sensitive to climate change. However, it is still not well documented that how atmospheric CO2 concentration will change the biochemical constituents considering nutrients status of Himalayan endangered plants in future climate change. Hence, we examined the impacts of elevated CO2 concentrations (ambient- ~ 400, 600, and 800 µmol CO2 mol− 1) on biochemical constituents (chlorophyll, carotenoids, ascorbic acid, protein, and total sugars and carbon partitioning) and nutrients response (potassium, phosphorus, and magnesium) in leaf, stem and root tissue of Asparagus racemosus Willd. (an endangered medicinal plant species of Himalayas). The results showed that the elevated CO2 concentration significantly (p ≤ 0.05) enhanced the chlorophyll, protein, total sugars, and carbon accumulation conversely diminished ascorbic acid in leaf tissues. The nutrients accumulation especially potassium and magnesium were significantly (p ≤ 0.05) improved while phosphorus accumulation suppressed under elevated CO2 concentration. Moreover, elevated CO2 notably altered protein, sugars, carbon, and nutrients partitioning in plant tissues viz. leaf, stem, and root of A. racemosus. The fate of rising atmospheric CO2 concentrations beyond 800 µmol CO2 mol− 1 will require much more study. Further studies are needed to understand the impacts of elevated CO2 concentration as well as a combination with other associated climatic variables on biochemical response particularly bioactive ingredients/health-promoting substances and nutrient profiling of this and other endangered medicinal plant species for improving livelihood support of the society.


Author(s):  
A. Natarajan, P. Vijayarengan ◽  
M. Vijayaragavan

The increasing concentrations (10, 25, 50, 75 and 100 mg /kg) of soil cadmium on growth and biochemical contents in tomato plants were analysed on 30th sampling days. Control plants were maintained separately. Plants were grown in pots containing 3 kg of air dried sandy loam soil and treated with different concentrations (mg/kg) of cadmium (0, 10, 25, 50, 75 and 100 ). Treatments decreased the growth parameters such as root and shoot length  and biochemical constituents such as, protein,(except, proline and  phenol content) contents in tomato plants compared to untreated plants. The shoot length of cadmium treated tomato plants was higher than the root length. proline and phenol content of root of  tomato plants was higher than the shoot.


Sign in / Sign up

Export Citation Format

Share Document