Biocompatible macro, micro and nano scale guar gum hydrogels and their protein absorption capacity

2020 ◽  
Vol 57 (12) ◽  
pp. 810-818 ◽  
Author(s):  
Selin Sagbas Suner ◽  
Nurettin Sahiner
Polymers ◽  
2019 ◽  
Vol 11 (10) ◽  
pp. 1593 ◽  
Author(s):  
Hajo Yagoub ◽  
Liping Zhu ◽  
Mahmoud H. M. A. Shibraen ◽  
Ali A. Altam ◽  
Dafaalla M. D. Babiker ◽  
...  

The complex aerogel generated from nano-polysaccharides, chitin nanocrystals (ChiNC) and TEMPO-oxidized cellulose nanofibers (TCNF), and its derivative cationic guar gum (CGG) is successfully prepared via a facile freeze-drying method with glutaraldehyde (GA) as cross-linkers. The complexation of ChiNC, TCNF, and CGG is shown to be helpful in creating a porous structure in the three-dimensional aerogel, which creates within the aerogel with large pore volume and excellent compressive properties. The ChiNC/TCNF/CGG aerogel is then modified with methyltrichlorosilane (MTCS) to obtain superhydrophobicity/superoleophilicity and used for oil–water separation. The successful modification is demonstrated through FTIR, XPS, and surface wettability studies. A water contact angle of 155° on the aerogel surface and 150° on the surface of the inside part of aerogel are obtained for the MTCS-modified ChiNC/TCNF/CGG aerogel, resulting in its effective absorption of corn oil and organic solvents (toluene, n-hexane, and trichloromethane) from both beneath and at the surface of water with excellent absorption capacity (i.e., 21.9 g/g for trichloromethane). More importantly, the modified aerogel can be used to continuously separate oil from water with the assistance of a vacuum setup and maintains a high absorption capacity after being used for 10 cycles. The as-prepared superhydrophobic/superoleophilic ChiNC/TCNF/CGG aerogel can be used as a promising absorbent material for the removal of oil from aqueous media.


2021 ◽  
Vol 33 (SP1) ◽  
pp. 137-149
Author(s):  
Syed Insha Rafiq ◽  
Khalid Muzaffar ◽  
Syed Mansha Rafiq ◽  
DC Saxena ◽  
BN Dar

There has been a growing demand for the production of gluten-free products due to increased occurrence of celiac disease. Thus, different research groups have been investigating the use of various available materials for the development of these functional products to fulfill customer’s needs. Horse Chestnut (Aesculus indica) seeds are underutilized, low-cost, and gluten-free, found in hilly areas of the Himalayan region of Kashmir valley, India. To determine their potential as an alternative to conventional food grains, an investigation was conducted to determine the physicochemical, functional, pasting, and thermal properties of Horse Chestnut (HCN) flour and its compatibility for the development of gluten-free pasta. HCN flour comprised 73.34% carbohydrate, 11.36% protein, 6.34% crude fiber, 3.27% fat, 3.16% ash, 3.15g/g oil absorption capacity, and 4.65% water absorption index. HCN flour showed 505 cp peak, 354 cp trough, 151 cp breakdown, 472 cp final viscosity, and 66.05°C pasting temperature. Transition temperatures (onset, peak, and conclusion) and enthalpy change (ΔH) were 60.12°C, 69.90°C, 81.53°C, and 10.56 J/g, respectively. Pasta prepared from HCN flour using guar gum (0, 0.5, and 1%) was analyzed for color, cooking qualities, and textural and sensory analysis. The present results showed that HCN flour possesses good nutritional quality and has properties comparable to conventional wheat flour. Therefore, HCN-flour-based pasta can act as a nutritious alternative to conventional gluten-free pasta and add variety to the diet of people suffering from celiac disease.


TAPPI Journal ◽  
2016 ◽  
Vol 15 (11) ◽  
pp. 731-738 ◽  
Author(s):  
KARITA KINNUNEN-RAUDASKOSKI ◽  
KRISTIAN SALMINEN ◽  
JANI LEHMONEN ◽  
TUOMO HJELT

Production cost savings by lowering basis weight has been a trend in papermaking. The strategy has been to decrease the amount of softwood kraft pulp and increase use of fillers and recycled fibers. These changes have a tendency to lower strength properties of both the wet and dry web. To compensate for the strength loss in the paper, a greater quantity of strength additives is often required, either dosed at the wet end or applied to the wet web by spray. In this pilot-scale study, it was shown how strength additives can be effectively applied with foam-based application technology. The technology can simultaneously increase dryness after wet pressing and enhance dry and wet web strength properties. Foam application of polyvinyl alcohol (PVA), ethylene vinyl alcohol (EVOH), carboxymethyl cellulose (CMC), guar gum, starch, and cellulose microfibrils (CMF) increased web dryness after wet pressing up to 5.2%-units compared to the reference sample. The enhanced dewatering with starch, guar gum, and CMF was detected with a bulk increase. Additionally, a significant increase in z-directional tensile strength of dry web and and in-plane tensile strength properties of wet web was obtained. Based on the results, foam application technology can be a very useful technology for several applications in the paper industry.


2017 ◽  
Vol 76 (10) ◽  
pp. 865-871
Author(s):  
V. P. Makhniy ◽  
P. P. Horley ◽  
A. M. Slyotov

Author(s):  
Dong Meng ◽  
Amir Afshar ◽  
Randa Bassou ◽  
David S. Thompson ◽  
Jing Zong ◽  
...  

Author(s):  
V. Suganya ◽  
V. Anuradha

Encapsulation is a process of enclosing the substances within an inert material which protects from environment as well as control drug release. Recently, two type of encapsulation has been performed in several research. Nanoencapsulation is the coating of various substances within another material at sizes on the nano scale. Microencapsulation is similar to nanoencapsulation aside from it involving larger particles and having been done for a greater period of time than nanoencapsulation. Encapsulation is a new technology that has wide applications in pharmaceutical industries, agrochemical, food industries and cosmetics. In this review, the difference between micro and nano encapsulation has been explained. This article gives an overview of different methods and reason for encapsulation. The advantages and disadvantages of micro and nano encapsulation technology were also clearly mentioned in this paper.


Author(s):  
Surender Verma ◽  
S. Singh ◽  
D. Mishra ◽  
Atul Gupta ◽  
Rakesh Sharma

The objective of present study was to develop colon targeted drug delivery using bacterially triggered approach through oral route. Valdecoxib (COX-2 inhibitor) was chosen as a model drug in order to target it to colon which may prove useful in inflammatory bowel disease and related disorders. Matrix tablets of Valdecoxib were prepared by wet granulation technique utilizing different ratio of Guar gum and Sodium starch glycholate. The prepared matrix tablets were evaluated for uniformity of weight, uniformity of content, hardness and in vitro dissolution study in simulated gastric and intestinal fluid (Phosphate Buffer pH-1.2, pH-6.8 and pH-7.4), followed by Dissolution study in bio-relevant dissolution media Phosphate Buffer (pH-6.8) containing rat caecal content. The results revealed that the formulated batch had released lesser quantity of drug at pH 1.2 and pH 7.4 in 2 hors whereas in biorelevent dissolution media containing rat caecal content it released significantly higher amount of drug which was also significantly higher than the dissolution media of same pH without caecal content (microflora) and it was concluded that guar gum can be used as a potential carrier for targeting drugs to colon.


Sign in / Sign up

Export Citation Format

Share Document