In vivo and in vitro evidence for the involvement of Nrf2-antioxidant response element signaling pathway in the inflammation and oxidative stress induced by particulate matter (PM10): the effective role of gallic acid

2019 ◽  
Vol 53 (2) ◽  
pp. 210-225 ◽  
Author(s):  
Maryam Radan ◽  
Mahin Dianat ◽  
Mohammad Badavi ◽  
Seyyed Ali Mard ◽  
Vahid Bayati ◽  
...  
2015 ◽  
Vol 6 (9) ◽  
pp. 2890-2917 ◽  
Author(s):  
Cristian Del Bo’ ◽  
Daniela Martini ◽  
Marisa Porrini ◽  
Dorothy Klimis-Zacas ◽  
Patrizia Riso

Severalin vitroandin vivostudies have demonstrated that polyphenol-rich berries may counteract oxidative stress. In this review, we summarized the main finding from human intervention trials on the role of berries in the modulation of markers of oxidative lipid, protein and DNA damage.


2016 ◽  
Vol 252 ◽  
pp. 50-61 ◽  
Author(s):  
Hesham M. Korashy ◽  
Ibraheem M. Attafi ◽  
Mushtaq A. Ansari ◽  
Mohammed A. Assiri ◽  
Osamah M. Belali ◽  
...  

2021 ◽  
Vol 12 (7) ◽  
pp. 3132-3141
Author(s):  
Hongkang Zhu ◽  
Wenqian Xu ◽  
Ning Wang ◽  
Wenhao Jiang ◽  
Yuliang Cheng ◽  
...  

We investigated the role of Maca aqueous extract on muscle during exercise-induced fatigue both in vivo and in vitro..


2018 ◽  
Vol 15 (4) ◽  
pp. 345-354 ◽  
Author(s):  
Barbara D'Orio ◽  
Anna Fracassi ◽  
Maria Paola Cerù ◽  
Sandra Moreno

Background: The molecular mechanisms underlying Alzheimer's disease (AD) are yet to be fully elucidated. The so-called “amyloid cascade hypothesis” has long been the prevailing paradigm for causation of disease, and is today being revisited in relation to other pathogenic pathways, such as oxidative stress, neuroinflammation and energy dysmetabolism. The peroxisome proliferator-activated receptors (PPARs) are expressed in the central nervous system (CNS) and regulate many physiological processes, such as energy metabolism, neurotransmission, redox homeostasis, autophagy and cell cycle. Among the three isotypes (α, β/δ, γ), PPARγ role is the most extensively studied, while information on α and β/δ are still scanty. However, recent in vitro and in vivo evidence point to PPARα as a promising therapeutic target in AD. Conclusion: This review provides an update on this topic, focussing on the effects of natural or synthetic agonists in modulating pathogenetic mechanisms at AD onset and during its progression. Ligandactivated PPARα inihibits amyloidogenic pathway, Tau hyperphosphorylation and neuroinflammation. Concomitantly, the receptor elicits an enzymatic antioxidant response to oxidative stress, ameliorates glucose and lipid dysmetabolism, and stimulates autophagy.


Antioxidants ◽  
2021 ◽  
Vol 10 (4) ◽  
pp. 507
Author(s):  
Rosaria Meccariello ◽  
Stefania D’Angelo

Aging and, particularly, the onset of age-related diseases are associated with tissue dysfunction and macromolecular damage, some of which can be attributed to accumulation of oxidative damage. Recently, growing interest has emerged on the beneficial effects of plant-based diets for the prevention of chronic diseases including obesity, diabetes, and cardiovascular disease. Several studies collectively suggests that the intake of polyphenols and their major food sources may exert beneficial effects on improving insulin resistance and related diabetes risk factors, such as inflammation and oxidative stress. They are the most abundant antioxidants in the diet, and their intake has been associated with a reduced aging in humans. Polyphenolic intake has been shown to be effective at ameliorating several age-related phenotypes, including oxidative stress, inflammation, impaired proteostasis, and cellular senescence, both in vitro and in vivo. In this paper, effects of these phytochemicals (either pure forms or polyphenolic-food) are reviewed and summarized according to affected cellular signaling pathways. Finally, the effectiveness of the anti-aging preventive action of nutritional interventions based on diets rich in polyphenolic food, such as the diets of the Blue zones, are discussed.


2021 ◽  
Vol 96 ◽  
pp. 107593
Author(s):  
Yiming Ma ◽  
Lijuan Luo ◽  
Xiangming Liu ◽  
Herui Li ◽  
Zihang Zeng ◽  
...  

2005 ◽  
Vol 87 (1) ◽  
pp. 176-186 ◽  
Author(s):  
Rebekah J. Jakel ◽  
Jonathan T. Kern ◽  
Delinda A. Johnson ◽  
Jeffrey A. Johnson

2021 ◽  
pp. 1-11
Author(s):  
Hanqing Chen ◽  
Xiru Xu ◽  
Zhengqing Liu ◽  
Yong Wu

Hypertension is considered a risk factor for a series of systematic diseases. Known factors including genetic predisposition, age, and diet habits are strongly associated with the initiation of hypertension. The current study aimed to investigate the role of miR-22-3p in hypertension. In this study, we discovered that the miR-22-3p level was significantly decreased in the thoracic aortic vascular tissues and aortic smooth muscle cells (ASMCs) of spontaneously hypertensive rats. Functionally, the overexpression of miR-22-3p facilitated the switch of ASMCs from the synthetic to contractile phenotype. To investigate the underlying mechanism, we predicted 11 potential target mRNAs for miR-22-3p. After screening, chromodomain helicase DNA-binding 9 (CHD9) was validated to bind with miR-22-3p. Rescue assays showed that the co-overexpression of miR-22-3p and CHD9 reversed the inhibitory effect of miR-22-3p mimics on cell proliferation, migration, and oxidative stress in ASMCs. Finally, miR-22-3p suppressed vascular remodeling and oxidative stress in vivo. Overall, miR-22-3p regulated ASMC phenotype switch by targeting CHD9. This new discovery provides a potential insight into hypertension treatment.


Sign in / Sign up

Export Citation Format

Share Document