Intratumoral delivery and therapeutic efficacy of nanoparticle-encapsulated anti-tumor siRNA following intrapulmonary administration for potential treatment of lung cancer

2019 ◽  
Vol 24 (9) ◽  
pp. 1095-1103 ◽  
Author(s):  
Yukimune Kanehira ◽  
Kohei Togami ◽  
Kiyomi Ishizawa ◽  
Shingo Sato ◽  
Hitoshi Tada ◽  
...  
2020 ◽  
Vol 21 (11) ◽  
pp. 902-909
Author(s):  
Jingxin Zhang ◽  
Weiyue Shi ◽  
Gangqiang Xue ◽  
Qiang Ma ◽  
Haixin Cui ◽  
...  

Background: Among all cancers, lung cancer has high mortality among patients in most of the countries in the world. Targeted delivery of anticancer drugs can significantly reduce the side effects and dramatically improve the effects of the treatment. Folate, a suitable ligand, can be modified to the surface of tumor-selective drug delivery systems because it can selectively bind to the folate receptor, which is highly expressed on the surface of lung tumor cells. Objective: This study aimed to construct a kind of folate-targeted topotecan liposomes for investigating their efficacy and mechanism of action in the treatment of lung cancer in preclinical models. Methods: We conjugated topotecan liposomes with folate, and the liposomes were characterized by particle size, entrapment efficiency, cytotoxicity to A549 cells and in vitro release profile. Technical evaluations were performed on lung cancer A549 cells and xenografted A549 cancer cells in female nude mice, and the pharmacokinetics of the drug were evaluated in female SD rats. Results: The folate-targeted topotecan liposomes were proven to show effectiveness in targeting lung tumors. The anti-tumor effects of these liposomes were demonstrated by the decreased tumor volume and improved therapeutic efficacy. The folate-targeted topotecan liposomes also lengthened the topotecan blood circulation time. Conclusion: The folate-targeted topotecan liposomes are effective drug delivery systems and can be easily modified with folate, enabling the targeted liposomes to deliver topotecan to lung cancer cells and kill them, which could be used as potential carriers for lung chemotherapy.


2010 ◽  
Vol 36 (4) ◽  
pp. 885-892 ◽  
Author(s):  
S. Kumar ◽  
R. Guleria ◽  
V. Singh ◽  
A. C. Bharti ◽  
A. Mohan ◽  
...  

Nanoscale ◽  
2021 ◽  
Author(s):  
Debin Zheng ◽  
Jingfei Liu ◽  
Yinghao Ding ◽  
Limin Xie ◽  
Yingying Zhang ◽  
...  

In situ self-assembling of prodrug molecules into nanomedicine can elevate the therapeutic efficacy of anticancer medications by enhancing the targeting and enrichment of anticancer drugs at tumor sites. However, the...


2021 ◽  
Vol 9 (Suppl 3) ◽  
pp. A1013-A1013
Author(s):  
Stephanie Schmidt ◽  
Younghee Lee ◽  
Cheuk Leung ◽  
Lorenzo Federico ◽  
Heather Lin ◽  
...  

BackgroundHow neoadjuvant chemo-immunotherapy modulates tumor immune composition and response is not completely understood. We interrogate immunomodulation of neoadjuvant platinum-based chemotherapy (C), nivolumab (N), and N-plus-C (NC) and their connections to therapeutic efficacy in resected non-small cell lung cancer (NSCLC) by integrating immunomic data from the ImmunogenomiC PrOfiling of NSCLC (ICON) study and NEOSTAR trial cohorts.MethodsIn NEOSTAR (NCT03158129), patients with stage I-IIIA (single N2) resectable NSCLC (AJCC7th) received N (3 mg/kg IV, D1,15,29); patients with stage IB(≥4cm)-IIIA (single N2) resectable NSCLC received NC (N 360 mg IV plus C, D1,22,43 for 3 cycles, every 3 weeks) before surgery; major pathologic response (MPR) was the primary endpoint. In ICON, patients with stage IB(≥4cm)-IIIA resectable NSCLC received C before surgery. Surgically resected tumor samples underwent immune profiling via flow cytometry (n=16,13,9 for C,N,NC), immunohistochemistry (IHC;n=0,18,14), and multiplexed immunofluorescence (mIF;n=28,16,10). Treatment-associated immunomodulation and associations with therapeutic efficacy were analyzed using: 1) a shared nearest neighbors-based network we developed linking measurements across datasets; 2) MetaCyto, a specialized cytometry analysis method for identifying cell subsets by clustering.ResultsWe holistically explored the immunomic data by integration across cohorts. Through hierarchical regression of the integrated data, we determined the overall effect of a given treatment controlling for the presence or absence of the other treatment.We examined C’s effects across all cohorts controlling for N. Across all patients, regardless of MPR, C is associated with immunosuppression, increasing PD1+ T cell (CD45+CD3+) populations: regulatory (CD4+CD25+FOXP3+), helper (CD4+), and effector (CD8+) (effect size(ES):1.48,1.61,1.26;q<0.05). C also decreases proliferative (Ki67+) populations: helper and effector T cells as well as NK (CD45+CD3-CD56+) cells (ES:-1.27,-1.43;-1.36;q<0.05). In patients without MPR (i.e., non-responding patients), immunosuppression appears heightened by increased Ki67+ regulatory T cells (ES:1.86;q<0.05).Conversely, we examined N’s effects across all cohorts controlling for C. Across all patients, regardless of MPR, N is associated with immune activation, increasing ICOS+ T cell populations: regulatory, helper, and effector (ES:1.29,1.29,1.47;q<0.05). Comparing N and NC reveals that adding C may drive exhaustion by increasing TIM3+ regulatory, helper and effector T cells (ES:1.16,1.17,1.23;q<0.05), an effect more pronounced in non-responding patients (ES:1.31,1.33,1.35;q<0.05).ConclusionsWe report the first integrated examination of the immunomodulatory effect of neoadjuvant C and N. C is associated with immunosuppression while N with immune activation; together, N appears to lessen C’s suppressive effects. Incorporation of transcriptomics into this integrated network of flow cytometry, mIF, and IHC immune profiling data is ongoing to augment translational insights for neoadjuvant chemo/immunotherapies.


2019 ◽  
Vol 11 (3) ◽  
pp. 316-321
Author(s):  
Aimie E. Garces ◽  
Mohammed Al-Hayali ◽  
Jong Bong Lee ◽  
Jiaxin Li ◽  
Pavel Gershkovich ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document