Changes in mountain glaciers in Northeast Russia from the little ice age to the mid‐20th century

1998 ◽  
Vol 22 (1) ◽  
pp. 65-78 ◽  
Author(s):  
O. N. Solomina ◽  
Ye. S. Filatov
1977 ◽  
Vol 7 (1) ◽  
pp. 63-111 ◽  
Author(s):  
George H. Denton ◽  
Wibjörn Karlén

Complex glacier and tree-line fluctuations in the White River valley on the northern flank of the St. Elias and Wrangell Mountains in southern Alaska and Yukon Territory are recognized by detailed moraine maps and drift stratigraphy, and are dated by dendrochronology, lichenometry,14C ages, and stratigraphic relations of drift to the eastern (123014C yr BP) and northern (198014C yr BP) lobes of the White River Ash. The results show two major intervals of expansion, one concurrent with the well-known and widespread Little Ice Age and the other dated between 2900 and 210014C yr BP, with a culmination about 2600 and 280014C yr BP. Here, the ages of Little Ice Age moraines suggest fluctuating glacier expansion between ad 1500 and the early 20th century. Much of the 20th century has experienced glacier recession, but probably it would be premature to declare the Little Ice Age over. The complex moraine systems of the older expansion interval lie immediately downvalley from Little Ice Age moraines, suggesting that the two expansion intervals represent similar events in the Holocene, and hence that the Little Ice Age is not unique. Another very short-lived advance occurred about 1230 to 105014C yr BP. Spruce immigrated into the valley to a minimum altitude of 3500 ft (1067 m), about 600 ft (183 m) below the current spruce tree line of 4100 ft (1250 m), at least by 802014C yr BP. Subsequent intervals of high tree line were in accord with glacier recession; in fact, several spruce-wood deposits above current tree line occur bedded between Holocene tills. High deposits of fossil wood range up to 76 m above present tree line and are dated at about 5250, 3600 to 3000, and 2100 to 123014C yr BP. St. Elias glacial and tree-line fluctuations, which probably are controlled predominantly by summer temperature and by length of the growing and ablation seasons, correlate closely with a detailed Holocene tree-ring curve from California, suggesting a degree of synchronism of Holocene summer-temperature changes between the two areas. This synchronism is strengthened by comparison with the glacier record from British Columbia and Mt. Rainier. Likewise, broad synchronism of Holocene events exists across the Arctic between the St. Elias Mountains and Swedish Lappland. Finally, two sequences from the Southern Hemisphere show similar records, in so far as dating allows. Hence, we believe that a preliminary case can be made for broad synchronism of Holocene climatic fluctuations in several regions, although further data are needed and several areas, particularly Colorado and Baffin Island, show major differences in the regional pattern.


2014 ◽  
Vol 55 (66) ◽  
pp. 167-176 ◽  
Author(s):  
E.Yu. Osipov ◽  
O.P. Osipova

AbstractContemporary glaciers of southeast Siberia are located on three high-mountain ridges (east Sayan, Baikalsky and Kodar). In this study, we present an updated glacier inventory based on high- to middle-resolution satellite imagery and field investigations. The inventory includes 51 glaciers with a total area of - 15 km2. Areas of individual glaciers vary from 0.06 to 1.33 km2, lengths from 130 to 2010 m and elevations from 1796 to 3490 m. The recent ice maximum extents (Little Ice Age) have been delineated from terminal moraines. On average, debris-free surface area shrunk by 59% between 1850 and 2006/11 (0.37% a–1), by 44% between 1850 and 2001/02 (0.29% a–1) and by 27% between 2001/02 and 2006/11 (3.39% a–1). The Kodar glaciers have experienced the largest area shrinkage, while the area loss on Baikalsky ridge was more moderate. Glacier changes are mainly related to regional summer temperature increase (by 1.7-2.6C from 1970 to 2010). There are some differences in glacier response due to different spatial patterns of snow accumulation, local topography (e.g. glacier elevation, slope) and geological activity. The studied glaciers (especially of Kodar ridge) are the most sensitive in Siberia to climate change since the late 20th century.


Geosciences ◽  
2019 ◽  
Vol 9 (11) ◽  
pp. 476
Author(s):  
Wieslaw Ziaja ◽  
Krzysztof Ostafin

Several new islands and many islets have appeared in the European Arctic since the end of the 20th century due to glacial recession under climate warming. The specificity of the formation of each individual strait and island is shown in the paper (apart from its location and timing of its origin). Analysis of available maps and satellite images of all three European Arctic archipelagos, from different times since 1909–1910, was the main research method. There are three pathways of the morphogenesis of the new islands: (1) simultaneous recession of glaciers from both sides of a depression in bedrock being a potential strait (typical in Franz Josef Land), (2) uncovering a rocky hill (which protrudes from a depression in bedrock) from under a receding glacier, (3) recession of one glacier which had reached a rocky fragment of a coastline (e.g., headland or peninsula), being a potential new island, during a maximum extent of this glacier during the Little Ice Age (in the beginning of the 20th century). Additional straits and islands are currently at the stage of formation and will continue to form in the European Arctic in the case of further warming or stabilization of the current climate conditions.


JOKULL ◽  
2021 ◽  
Vol 70 ◽  
pp. 119-128
Author(s):  
Snaevarr Gudmundsson ◽  
Helgi Björnsson

The glacial river Jökulsá á Breiðamerkursandi drains the Jökulsárlón tidal lagoon (27 km2), in Southeast Iceland. Despite being the shortest glacial outlet (0.6 km), it is among the most voluminous rivers in Iceland, with an estimated average drainage of 250–300 m3/s and has doubled its volume at peak runoff. Until a bridge was established, this was one of Iceland’s most infamous river and for travellers, cruising on horseback, the greatest obstacle to cross on the main road. The river began shaping its present channel in the late 19th century but was not permanently settled until the mid-20th century. Before that it used to wander around the fan, occasionally in several branches, or as a single heavy moving water. In this paper we present a map of its known runoffs and channels that were formed in the 19th and 20th centuries. Few channels were digitized from old maps, but several of those were identified and recorded by the late Flosi Björnsson (1906–1993), a farmer from the Kvísker, who guided travellers across the river before the bridge was built. The Breiðamerkurjökull outlet glacier of Vatnajökull, Southeast Iceland, advanced 10–15 km during the Little Ice Age. During the LIA advance the wide fan shaped shore in front of Breiðamerkurjökull gradually extended outward by >1 km, mainly due to sediment deposition by the Jökulsá river and few other temporal glacial river branches. At the turn of the 20th century the outlet glacier started to retreat slowly and in the 1930s terminal lakes were formed. With the formation of the Jökulsárlón tidal lagoon river dumping at the shore terminated and was replaced by a progressive coastal erosion. Currently ca. 0.9 km has eroded off the coast since the 1930s. A 0.65 km wide strip now remains between the coast and Jökulsárlón tidal lagoon, where the Jökulsá river and the remains of its former runway channels are located.


1992 ◽  
Vol 16 ◽  
pp. 163-167 ◽  
Author(s):  
Su Zhen ◽  
Liu Shiyin ◽  
Wang Ninglian ◽  
Shi Aiping

From field observations and historical information, it is found that there are generally three end moraines in front of glaciers in the Gongga mountains. These moraines were formed during the Little Ice Age and represent three glacier advances. During the last 100 years, the glaciers have been in continuous retreat except for two periods of stability or even slight advance, one in the beginning of the 20th century, up to the 1920s, and the other from the middle 1960s to the early 1980s. The amplitudes of glacier fluctuations were greater on the east slope than on the west.


1986 ◽  
Vol 8 ◽  
pp. 65-68 ◽  
Author(s):  
Jane G. Ferrigno

Grasshopper Glacier is a cirque glacier in the central Rocky Mountains of the United States. It is a remnant of the “Little Ice Age”, rather than the more widespread and older Pinedale Glaciation. The glacier has not been monitored on a regular basis and very few maps have been published of the area, but it has been studied, photographed, occasionally mapped, and described by scientific and non-scientific groups, at different times since 1898. These photographic, cartographic, and written records make it possible to trace the fluctuations of this glacier since 1898. Grasshopper Glacier has had periods of positive mass balance, but the overall trend has been negative, with accelerated melting in recent years. It is estimated that Grasshopper Glacier has lost about 50% of its area and as much as 90% of its volume, since 1898. Other Rocky Mountain glaciers are experiencing similar wastage and, if current conditions continue, these glaciers will disappear by the middle of the next century.


2018 ◽  
Vol 64 (243) ◽  
pp. 100-118 ◽  
Author(s):  
CHRIS R. STOKES ◽  
LISS M. ANDREASSEN ◽  
MATTHEW R. CHAMPION ◽  
GEOFFREY D. CORNER

ABSTRACTThe recession of mountain glaciers worldwide is increasing global sea level and, in many regions, human activities will have to adapt to changes in surface hydrology. Thus, it is important to provide up-to-date analyses of glacier change and the factors modulating their response to climate warming. Here we report changes in the extent of >120 glaciers on the Lyngen Peninsula, northern Norway, where glacier runoff is utilised for hydropower and where glacial lake outburst floods have occurred. Glaciers covered at least 114 km2 in 1953 and we compare this inventory with those from 1988, 2001 and a new one from 2014, and previously-dated Little Ice Age (LIA) limits. Results show a steady reduction in area (~0.3% a−1) between their LIA maximum (~1915) and 1988, consistent with increasing summer air temperatures, but recession paused between 1988 and 2001, coinciding with increased winter precipitation. Air temperatures increased 0.5°C per decade from the 1990s and the rate of recession accelerated to ~1% a−1 between 2001 and 2014 when glacier area totalled ~95.7 km2. Small glaciers (<0.05 km2) with low maximum elevations (<1400 m) experienced the largest percentage losses and, if warming continues, several glaciers may disappear within the next two decades.


Author(s):  
Benjamin A. Bell ◽  
William J. Fletcher ◽  
Philip D. Hughes ◽  
Henk L. Cornelissen ◽  
David Fink ◽  
...  

AbstractThe grazing lands of the High Atlas are vulnerable to climate change and the decline of traditional management practices. However, prior to the mid-20th century, there is little information to examine historical environmental change and resilience to past climate variability. Here, we present a new pollen, non-pollen palynomorph (NPP) and microcharcoal record from a sub-alpine marsh (pozzine) at Oukaïmeden, located in the Marrakech High Atlas, Morocco. The record reveals a history of grazing impacts with diverse non-arboreal pollen assemblages dominant throughout the record as well as recurrent shifts between wetter and drier conditions. A large suite of radiocarbon dates (n = 22) constrains the deposit to the last ~ 1,000 years although multiple reversed ages preclude development of a robust age-depth model for all intervals. Between relatively dry conditions during the Medieval period and in the 20th century, intervening wet conditions are observed, which we interpret as a locally enhanced snowpack during the Little Ice Age. Hydrological fluctuations evidenced by wetland pollen and NPPs are possibly associated with centennial-scale precipitation variability evidenced in regional speleothem records. The pollen record reveals an herbaceous grassland flora resilient against climatic fluctuations through the last millennium, possibly supported by sustainable collective management practices (agdal), with grazing indicators suggesting a flourishing pastoral economy. However, during the 20th century, floristic changes and increases in charcoal accumulation point to a decline in management practices, diversification of land-use (including afforestation) and intensification of human activity.


Sign in / Sign up

Export Citation Format

Share Document