Phytocompounds from Anvillea radiata as promising anti-Covid-19 drugs: in silico studies and in vivo safety assessment

Author(s):  
Mourad Akdad ◽  
Soumia Moujane ◽  
Ismail Bouadid ◽  
Mohamed Benlyas ◽  
Mohamed Eddouks
2020 ◽  
Vol 26 ◽  
Author(s):  
John Chen ◽  
Andrew Martin ◽  
Warren H. Finlay

Background: Many drugs are delivered intranasally for local or systemic effect, typically in the form of droplets or aerosols. Because of the high cost of in vivo studies, drug developers and researchers often turn to in vitro or in silico testing when first evaluating the behavior and properties of intranasal drug delivery devices and formulations. Recent advances in manufacturing and computer technologies have allowed for increasingly realistic and sophisticated in vitro and in silico reconstructions of the human nasal airways. Objective: To perform a summary of advances in understanding of intranasal drug delivery based on recent in vitro and in silico studies. Conclusion: The turbinates are a common target for local drug delivery applications, and while nasal sprays are able to reach this region, there is currently no broad consensus across the in vitro and in silico literature concerning optimal parameters for device design, formulation properties and patient technique which would maximize turbinate deposition. Nebulizers are able to more easily target the turbinates, but come with the disadvantage of significant lung deposition. Targeting of the olfactory region of the nasal cavity has been explored for potential treatment of central nervous system conditions. Conventional intranasal devices, such as nasal sprays and nebulizers, deliver very little dose to the olfactory region. Recent progress in our understanding of intranasal delivery will be useful in the development of the next generation of intranasal drug delivery devices.


2018 ◽  
Vol 21 (3) ◽  
pp. 215-221
Author(s):  
Haroon Khan ◽  
Muhammad Zafar ◽  
Helena Den-Haan ◽  
Horacio Perez-Sanchez ◽  
Mohammad Amjad Kamal

Aim and Objective: Lipoxygenase (LOX) enzymes play an important role in the pathophysiology of several inflammatory and allergic diseases including bronchial asthma, allergic rhinitis, atopic dermatitis, allergic conjunctivitis, rheumatoid arthritis and chronic obstructive pulmonary disease. Inhibitors of the LOX are believed to be an ideal approach in the treatment of diseases caused by its over-expression. In this regard, several synthetic and natural agents are under investigation worldwide. Alkaloids are the most thoroughly investigated class of natural compounds with outstanding past in clinically useful drugs. In this article, we have discussed various alkaloids of plant origin that have already shown lipoxygenase inhibition in-vitro with possible correlation in in silico studies. Materials and Methods: Molecular docking studies were performed using MOE (Molecular Operating Environment) software. Among the ten reported LOX alkaloids inhibitors, derived from plant, compounds 4, 2, 3 and 1 showed excellent docking scores and receptor sensitivity. Result and Conclusion: These compounds already exhibited in vitro lipoxygenase inhibition and the MOE results strongly correlated with the experimental results. On the basis of these in vitro assays and computer aided results, we suggest that these compounds need further detail in vivo studies and clinical trial for the discovery of new more effective and safe lipoxygenase inhibitors. In conclusion, these results might be useful in the design of new and potential lipoxygenase (LOX) inhibitors.


2019 ◽  
Vol 15 (1) ◽  
pp. 102-118 ◽  
Author(s):  
Carolina Campos-Rodríguez ◽  
José G. Trujillo-Ferrara ◽  
Ameyali Alvarez-Guerra ◽  
Irán M. Cumbres Vargas ◽  
Roberto I. Cuevas-Hernández ◽  
...  

Background: Thalidomide, the first synthesized phthalimide, has demonstrated sedative- hypnotic and antiepileptic effects on the central nervous system. N-substituted phthalimides have an interesting chemical structure that confers important biological properties. Objective: Non-chiral (ortho and para bis-isoindoline-1,3-dione, phthaloylglycine) and chiral phthalimides (N-substituted with aspartate or glutamate) were synthesized and the sedative, anxiolytic and anticonvulsant effects were tested. Method: Homology modeling and molecular docking were employed to predict recognition of the analogues by hNMDA and mGlu receptors. The neuropharmacological activity was tested with the open field test and elevated plus maze (EPM). The compounds were tested in mouse models of acute convulsions induced either by pentylenetetrazol (PTZ; 90 mg/kg) or 4-aminopyridine (4-AP; 10 mg/kg). Results: The ortho and para non-chiral compounds at 562.3 and 316 mg/kg, respectively, decreased locomotor activity. Contrarily, the chiral compounds produced excitatory effects. Increased locomotor activity was found with S-TGLU and R-TGLU at 100, 316 and 562.3 mg/kg, and S-TASP at 316 and 562.3 mg/kg. These molecules showed no activity in the EPM test or PTZ model. In the 4-AP model, however, S-TGLU (237.1, 316 and 421.7 mg/kg) as well as S-TASP and R-TASP (316 mg/kg) lowered the convulsive and death rate. Conclusion: The chiral compounds exhibited a non-competitive NMDAR antagonist profile and the non-chiral molecules possessed selective sedative properties. The NMDAR exhibited stereoselectivity for S-TGLU while it is not a preference for the aspartic derivatives. The results appear to be supported by the in silico studies, which evidenced a high affinity of phthalimides for the hNMDAR and mGluR type 1.


2021 ◽  
Vol 16 (5) ◽  
pp. 1934578X2110166
Author(s):  
Xin Yi Lim ◽  
Janice Sue Wen Chan ◽  
Terence Yew Chin Tan ◽  
Bee Ping Teh ◽  
Mohd Ridzuan Mohd Abd Razak ◽  
...  

Drug repurposing is commonly employed in the search for potential therapeutic agents. Andrographis paniculata, a medicinal plant commonly used for symptomatic relief of the common cold, and its phytoconstituent andrographolide, have been repeatedly identified as potential antivirals against SARS-CoV-2. In light of new evidence emerging since the onset of the COVID-19 pandemic, this rapid review was conducted to identify and evaluate the current SARS-CoV-2 antiviral evidence for A. paniculata, andrographolide, and andrographolide analogs. A systematic search and screen strategy of electronic databases and gray literature was undertaken to identify relevant primary articles. One target-based in vitro study reported the 3CLpro inhibitory activity of andrographolide as being no better than disulfiram. Another Vero cell-based study reported potential SARS-CoV-2 inhibitory activity for both andrographolide and A. paniculata extract. Eleven in silico studies predicted the binding of andrographolide and its analogs to several key antiviral targets of SARS-CoV-2 including the spike protein-ACE-2 receptor complex, spike protein, ACE-2 receptor, RdRp, 3CLpro, PLpro, and N-protein RNA-binding domain. In conclusion, in silico and in vitro studies collectively suggest multi-pathway targeting SARS-CoV-2 antiviral properties of andrographolide and its analogs, but in vivo data are needed to support these predictions.


2021 ◽  
Vol 17 ◽  
Author(s):  
Thiago M. de Aquino ◽  
Paulo H. B. França ◽  
Érica E. E. S. Rodrigues ◽  
Igor J. S. Nascimento ◽  
Paulo F. S. Santos-Júnior ◽  
...  

Background: Leishmaniasis is a worldwide health problem, highly endemic in developing countries. Among the four main clinical forms of the disease, visceral leishmaniasis is the most severe, fatal in 95% of cases. The undesired side-effects from first-line chemotherapy and the reported drug resistance search for effective drugs that can replace or supplement those currently used an urgent need. Aminoguanidine hydrazones (AGH's) have been explored for exhibiting a diverse spectrum of biological activities, in particular the antileishmanial activity of MGBG. The bioisosteres thiosemicarbazones (TSC's) offer a similar biological activity diversity, including antiprotozoal effects against Leishmania species and Trypanosoma cruzi. Objective: Considering the impact of leishmaniasis worldwide, this work aimed to design, synthesize, and perform a screening upon L. chagasi amastigotes and for the cytotoxicity of the small "in-house" library of both AGH and TSC derivatives and their structurally-related compounds. Method: A set of AGH's (3-7), TSC's (9, 10), and semicarbazones (11) were initially synthesized. Subsequently, different semi-constrained analogs were designed and also prepared, including thiazolidines (12), dihydrothiazines (13), imidazolines (15), pyrimidines (16, 18) azines (19, 20), and benzotriazepinones (23-25). All intermediates and target compounds were obtained with satisfactory yields and exhibited spectral data consistent with their structures. All final compounds were evaluated against L. chagasi amastigotes and J774.A1 cell line. Molecular docking was performed towards trypanothione reductase using GOLD® software. Result: The AGH's 3i, 4a, and 5d, and the TSC's 9i, 9k, and 9o were selected as valuable hits. These compounds presented antileishmanial activity compared with pentamidine, showing IC50 values ranged from 0.6 to 7.27 μM, maximal effects up to 55.3%, and satisfactory SI values (ranged from 11 to 87). On the other hand, most of the resulting semi-constrained analogs were found cytotoxic or presented reduced antileishmanial activity. In general, TSC class is more promising than its isosteric AGH analogs, and the beneficial aromatic substituent effects are not similar in both series. In silico studies have suggested that these hits are capable of inhibiting the trypanothione reductase from the amastigote forms. Conclusion: The promising antileishmanial activity of three AGH’s and three TSC’s was characterized. These compounds presented antileishmanial activity compared with PTD, showing IC50 values ranged from 0.6 to 7.27 μM, and satisfactory SI values. Further pharmacological assays involving other Leishmania strains are under progress, which will help to choose the best hits for in vivo experiments.


2021 ◽  
Vol 16 (12) ◽  
pp. 119-124
Author(s):  
S. Syed Chandini ◽  
Sairam Mantri

Thrombomodulin (TM) and matrix metalloproteinase (MMPs) are the major factors that are responsible for lung cancer. Hence, the identification of novel compounds inhibiting TM and MMPs is the challenging task for the scientists. Even though synthetic drugs were developed, their toxicity and offtarget limit their usage. The current study aims to investigate the molecular simulations for bacterial derived stearic acid to estimate the in silico anticancer activity against TM and MMPs protein as target compounds and the findings were correlated with the standard drug vorinostat. Using Lamarckian genetic algorithm, the TM and MMPs were energy minimized and docked with stearic acid and vorinostat using auto dock 4.2 and visualized in PyMol software. Protein and ligand binding analysis revealed that stearic acid interacts with the amino acids of MMPs residues of PHE83, SER212, ALA213 and ASN214. It interacts with the TMs with two amino acid residues i.e. CYS407 and GLU408. Hence, compared to vorinostat, stearic acid shows a higher binding affinity towards MMPs and slightly lower affinity towards TM proteinase. We conclude that the computational analysis of ligand binding interaction of stearic acid suggests that it could be a potential inhibitor of matrix metallo proteinase and is effective against thrombomodulin and can be considered as an anticancer agent by in vivo studies.


ACS Omega ◽  
2020 ◽  
Vol 5 (25) ◽  
pp. 15069-15076 ◽  
Author(s):  
Anudeep Kaur ◽  
Saweta Garg ◽  
Bilal Ahmad Shiekh ◽  
Nirmal Singh ◽  
Palwinder Singh ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document