Impact of design parameters on oil recovery performance in polymer flooding with low-salinity water-flooding

2020 ◽  
Vol 23 (2) ◽  
pp. 63-72
Author(s):  
Hyunsang Yoo ◽  
Jeonghwan Lee
2020 ◽  
Vol 10 (8) ◽  
pp. 3971-3981
Author(s):  
Sanyah Ramkissoon ◽  
David Alexander ◽  
Rean Maharaj ◽  
Mohammad Soroush

Abstract Trinidad and Tobago (TT) has a rich history of crude oil production and is still one of the largest oil- and gas-producing countries in the Caribbean region. The energy sector contributes approximately 35% of GDP to its economy; however, economic headwinds due to steadily decreasing oil production, low commodity prices and increased competition worldwide have highlighted the need for more economical methods of enhanced oil recovery (EOR) techniques. Although the use of low salinity polymer flooding for EOR has had success in other countries, critical information relating associated flooding system parameters such as soil type, additive type, adsorption characteristics, rheological (flow) characteristics, pH and salinity is not available and is critical if this type of EOR is to be implemented in TT. The nature and inter-relationship of these parameters are unique to a particular reservoir, and studies in this regard will provide key input data for simulations to produce near realistic projections of this EOR strategy. These projections can be used to evaluate the usefulness of a low salinity polymer flooding in TT and guide for the proper implementation of the strategy. The EOR 33 wells located in the lower Forest sands in Southern Trinidad was selected for study as they satisfied the screening criteria. Laboratory studies of the adsorption of xanthan gum concentrations of 0 to 4000 ppm in combination with NaCl solutions (0–40,000 ppm) onto gravel packed sand found that the mixture of 1000 ppm polymer containing 1000 ppm NaCl exhibited the lowest adsorption capacity. The Langmuir coefficients were derived for each salinity, and together with results from the viscosity studies were inputted within the simulation models. Simulations of a sector of the EOR 33 projected that the highest oil recovery occurred using NaCl < 2000 ppm was 11% greater than water flood. A combination of brine (NaCl < 2000 ppm) with gel technology (1000 ppm polymer) produced the highest oil recovery factor (54%), almost twice that of water flooding, the highest average reservoir pressure and lowest water cut value. The improved performance characteristics observed using low salinity water flood with xanthan gum gel for injection can be associated with improved displacement efficiency and improved the sweep efficiency suggesting the strategy to be a technically feasible option for the EOR well in Trinidad.


2021 ◽  
pp. 1-22 ◽  
Author(s):  
Ali Madadizadeh ◽  
Alireza Sadeghein ◽  
Siavash Riahi

Abstract Today, enhance oil recovery (EOR) methods are attracting more attention to increase the petroleum production rate. Some EOR methods such as low salinity water flooding (LSW) can increase the amount of fine migration and sand production in sandstone reservoirs which causes a reduction in permeability and inflict damages on to the reservoir and the production equipment. One of the methods to control fine migration is using nanotechnology. Nanoparticles (NPs) can reduce fine migration by various mechanisms such as reducing the zeta potential of fine particles' surfaces. In this paper, three NPs including SiO2, MgO, and Al2O3 's effects on controlling fine migration and sand production were investigated in two scenarios of pre-flush and co-injection by using sandpack as a porous media sample. When NPs are injected into the porous media sample, the outflow turbidity and zeta potential of particles decreases. Experiments showed that SiO2 has the best effect on controlling fine migration in comparison with other NPs and it could reduce fine migration 69% in pre-flush and 75% in co-injection. Also, MgO and Al2O3 decreased fine migration 65% and 33% in the pre-flush scenario and 49%,13% in the co-injection scenario, respectively.


RSC Advances ◽  
2020 ◽  
Vol 10 (69) ◽  
pp. 42570-42583
Author(s):  
Rohit Kumar Saw ◽  
Ajay Mandal

The combined effects of dilution and ion tuning of seawater for enhanced oil recovery from carbonate reservoirs. Dominating mechanisms are calcite dissolution and the interplay of potential determining ions that lead to wettability alteration of rock surface.


2020 ◽  
Vol 2020 ◽  
pp. 1-9
Author(s):  
Oluwasanmi Olabode ◽  
David Alaigba ◽  
Daniel Oramabo ◽  
Oreofeoluwa Bamigboye

In this project, low-salinity water flooding has been modeled on ECLIPSE black oil simulator in three cases for a total field production life of twenty-five years. In the first case, low-salinity water flooding starts fifteen years after secondary water flooding. For the second case, low-salinity water flooding starts five years after secondary water flooding and runs till the end of the field production life. For the third case, low-salinity water flooding starts five years after secondary water flooding, but low-salinity water flooding is injected in measured pore volumes for a short period of time; then, high-salinity water flooding was resumed till the end of the field production life. This was done to measure the effect of low-salinity water flooding as slug injection. From the three cases presented, oil recovery efficiency, field oil production rate, and field water cut were observed. Increased percentages of 22.66%, 35.12%, and 26.77% were observed in the three cases, respectively.


Nanomaterials ◽  
2020 ◽  
Vol 10 (7) ◽  
pp. 1296 ◽  
Author(s):  
Reidun C. Aadland ◽  
Salem Akarri ◽  
Ellinor B. Heggset ◽  
Kristin Syverud ◽  
Ole Torsæter

Cellulose nanocrystals (CNCs) and 2,2,6,6-tetramethylpiperidine-1-oxyl (TEMPO)-oxidized cellulose nanofibrils (T-CNFs) were tested as enhanced oil recovery (EOR) agents through core floods and microfluidic experiments. Both particles were mixed with low salinity water (LSW). The core floods were grouped into three parts based on the research objectives. In Part 1, secondary core flood using CNCs was compared to regular water flooding at fixed conditions, by reusing the same core plug to maintain the same pore structure. CNCs produced 5.8% of original oil in place (OOIP) more oil than LSW. For Part 2, the effect of injection scheme, temperature, and rock wettability was investigated using CNCs. The same trend was observed for the secondary floods, with CNCs performing better than their parallel experiment using LSW. Furthermore, the particles seemed to perform better under mixed-wet conditions. Additional oil (2.9–15.7% of OOIP) was produced when CNCs were injected as a tertiary EOR agent, with more incremental oil produced at high temperature. In the final part, the effect of particle type was studied. T-CNFs produced significantly more oil compared to CNCs. However, the injection of T-CNF particles resulted in a steep increase in pressure, which never stabilized. Furthermore, a filter cake was observed at the core face after the experiment was completed. Microfluidic experiments showed that both T-CNF and CNC nanofluids led to a better sweep efficiency compared to low salinity water flooding. T-CNF particles showed the ability to enhance the oil recovery by breaking up events and reducing the trapping efficiency of the porous medium. A higher flow rate resulted in lower oil recovery factors and higher remaining oil connectivity. Contact angle and interfacial tension measurements were conducted to understand the oil recovery mechanisms. CNCs altered the interfacial tension the most, while T-CNFs had the largest effect on the contact angle. However, the changes were not significant enough for them to be considered primary EOR mechanisms.


Sign in / Sign up

Export Citation Format

Share Document