scholarly journals Characterization, optimization of preparation process of an Inonotus obliquus polysaccharide-Zinc (II) complex and its antioxidant activities

Author(s):  
Ding Xiao ◽  
Wu Xinyi ◽  
Zhang Ze ◽  
He Jinglong ◽  
Zhang Weizhi ◽  
...  
2017 ◽  
Vol 25 (3) ◽  
pp. 222-230 ◽  
Author(s):  
Yang Hu ◽  
Shanyi Shi ◽  
Lu Lu ◽  
Chunying Teng ◽  
Sumei Yu ◽  
...  

Polymers ◽  
2021 ◽  
Vol 13 (9) ◽  
pp. 1441
Author(s):  
Yangpeng Lu ◽  
Yanan Jia ◽  
Zihan Xue ◽  
Nannan Li ◽  
Junyu Liu ◽  
...  

Inonotus obliquus (Chaga mushroom) is a kind of medicine and health food widely used by folk in China, Russia, Korea, and some occidental countries. Among the extracts from Inonotus obliquus, Inonotus obliquus polysaccharide (IOPS) is supposed to be one of the major bioactive components in Inonotus obliquus, which possesses antitumor, antioxidant, anti-virus, hypoglycemic, and hypolipidemic activities. In this review, the current advancements on extraction, purification, structural characteristics, and biological activities of IOPS were summarized. This review can provide significant insight into the IOPS bioactivities as their in vitro and in vivo data were summarized, and some possible mechanisms were listed. Furthermore, applications of IOPS were reviewed and discussed; IOPS might be a potential candidate for the treatment of cancers and type 2 diabetes. Besides, new perspectives for the future work of IOPS were also proposed.


PLoS ONE ◽  
2021 ◽  
Vol 16 (11) ◽  
pp. e0259570
Author(s):  
Binhong Hu ◽  
Yuqing Dong ◽  
Wenjing Zhou ◽  
Yichuan Ma ◽  
Luyao Li ◽  
...  

Inonotus obliquus Polysaccharide (IOP) is a large molecule extracted from Inonotus obliqus, a medicinal fungus, which has a wide range of biological activities and has been shown to be associated with inflammation. The purpose of this study is to investigate whether IOP can help to reduce acute endometritis by regulating intestinal flora. We observed pathological changes in mice with endometritis following treatment with IOP and evaluated changes in the levels of interleukin-6 (IL-6), interleukin-1β (IL-1β) and tumor necrosis factor α (TNF-α), and further studied the effects of IOP on the intestinal flora of endometritis mice using 16S rRNA high-throughput sequencing. The results showed that IOP improved the condition of uterine tissues and reduced the release of pro-inflammatory cytokines. Meanwhile, the 16S rRNA sequencing results showed that IOP could regulate the changes in intestinal microflora at the level of genera, possibly by changing the relative abundance of some genera.


Foods ◽  
2021 ◽  
Vol 10 (12) ◽  
pp. 3085
Author(s):  
Mo Yang ◽  
Dong Hu ◽  
Zhengying Cui ◽  
Hongxuan Li ◽  
Chaoxin Man ◽  
...  

Excessive lipid intake will cause hyperlipidemia, fatty liver metabolism disease, and endanger people’s health. Edible fungus polysaccharide is a natural active substance for lipid lowering. In this study, the HepG2 cell model induced by oleic acid and mice model induced by a high-fat diet was established. The lipid-lowering effects of Inonotus obliquus polysaccharide (IOP) was investigated in vivo and in vitro. Glucose (251.33 mg/g), rhamnose (11.53 mg/g), ribose (5.10 mg/g), glucuronic acid (6.30 mg/g), and galacturonic acid (2.95 mg/g) are present in IOP, at a ratio of 85.2:3.91:1.73:2.14:1. The molecular weight of IOP is 42.28 kDa. Treatment with 60 mg/L of IOP showed a significant lipid-lowering effect in HepG2 cells compared with the oleic acid-treated group. In the oil red O-stained images, the red fat droplets in the IOP-treated groups were significantly reduced. TC and TG levels of IOP-treated groups decreased. IOP can alleviate the lipid deposition in the mice liver due to high-fat diet, and significantly reduce their serum TC, TG, and LDL-C contents. IOP could activate AMPK but decrease the SREBP-1C, FAS, and ACC protein expression related to adipose synthesis in mice. IOP has a certain potential for lipid-lowering effects both in vivo and in vitro.


AMB Express ◽  
2017 ◽  
Vol 7 (1) ◽  
Author(s):  
Yang Hu ◽  
Chunying Teng ◽  
Sumei Yu ◽  
Xin Wang ◽  
Jinsong Liang ◽  
...  

Microbiology ◽  
2009 ◽  
Vol 155 (10) ◽  
pp. 3440-3448 ◽  
Author(s):  
Weifa Zheng ◽  
Kangjie Miao ◽  
Yanxia Zhang ◽  
Shenyuan Pan ◽  
Meimei Zhang ◽  
...  

A fungal elicitor prepared from the cell debris of the plant-pathogenic ascomycete Alternaria alternata induces multiple responses by Inonotus obliquus cells, including an increase in generation of nitric oxide (NO), activity of phenylalanine ammonia lyase (PAL) and accumulation of total mycelial phenolic compounds (TMP), but does not trigger production of oxylipins or jasmonic acid (JA). The role of NO in TMP production was investigated via the effects of the NO-specific scavenger 2-(4-carboxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-oxide (cPITO) and the nitric oxide synthase (NOS) inhibitor aminoguanidine (AG). TMP profiles were assayed using 1H NMR spectroscopy combining multivariate pattern recognition strategies. Pretreatment of I. obliquus mycelia with cPITO or AG suppressed not only elicitor-enhanced NO generation and PAL activity, but also the elicitor-induced increase in TMP production. This TMP reduction by either a NO scavenger or a NOS inhibitor was reversed by exogenous addition of either a NO donor, sodium nitroprusside, or JA separately. NMR-based metabonomic analysis of TMP profiles showed that the induced TMP were hispidin analogues including inoscavins, phelligridins, davallialactone and methyldavallialactone, which possess high antioxidant activities. Thus, NO mediates an elicitor-induced increase in production of antioxidant polyphenols in I. obliquus via a signalling pathway independent of oxylipins or JA, a mechanism which differs from those in some higher plants.


Sign in / Sign up

Export Citation Format

Share Document