SEISMIC ENERGY DISSIPATION SYSTEMS – a REVIEW

Author(s):  
A Sravan Ashwin ◽  
Arunachalam P ◽  
Sreenivas M.K ◽  
S Rahima Shabeen
Author(s):  
Yiming Ma ◽  
Liusheng He ◽  
Ming Li

Steel slit shear walls (SSSWs), made by cutting slits in steel plates, are increasingly adopted in seismic design of buildings for energy dissipation. This paper estimates the seismic energy dissipation capacity of SSSWs considering out-of-plane buckling. In the experimental study, three SSSW specimens were designed with different width-thickness ratios and aspect ratios and tested under quasi-static cyclic loading. Test results showed that the width-thickness ratio of the links dominated the occurrence of out-of-plane buckling, which produced pinching in the hysteresis and thus reduced the energy dissipation capacity. Out-of-plane buckling occurred earlier for the links with a larger width-thickness ratio, and vice versa. Refined finite element model was built for the SSSW specimens, and validated by the test results. The concept of average pinching parameter was proposed to quantify the degree of pinching in the hysteresis. Through the parametric analysis, an equation was derived to estimate the average pinching parameter of the SSSWs with different design parameters. A new method for estimating the energy dissipation of the SSSWs considering out-of-plane buckling was proposed, by which the predicted energy dissipation agreed well with the test results.


2018 ◽  
Vol 172 ◽  
pp. 405-418 ◽  
Author(s):  
Iolanda Nuzzo ◽  
Daniele Losanno ◽  
Nicola Caterino ◽  
Giorgio Serino ◽  
Luis M. Bozzo Rotondo

2013 ◽  
Vol 680 ◽  
pp. 234-238
Author(s):  
Jin Li Qiao ◽  
Wen Ling Tian ◽  
Ming Jie Zhou ◽  
Fang Lu Jiang ◽  
Kun Zhao

In order to validate the seismic performance of reinforced concrete grid-mesh frame wall , four grid frame walls in half size is made with different height-width ratios and different grid forms in the paper. Two of them are filling with cast-in-place plaster as filling material. According to the experimental results of these four walls subjected to horizontal reciprocating loads, we know that the grid-mesh frame wall's breaking form are in stages and multiple modes, and the main influencing factors are height-width ratio and grid form, what's more, with cast-in-place plaster as fill material, could not only improve the level of the wall bearing capacity and stiffness, but also improve the ductility and seismic energy dissipation capacity.


2017 ◽  
Vol 21 (10) ◽  
pp. 1421-1436 ◽  
Author(s):  
Viktor Hristovski ◽  
Violeta Mircevska ◽  
Bruno Dujic ◽  
Mihail Garevski

Cross-laminated timber has recently gained great popularity in earthquake-prone areas for construction of residential, administrative, and other types of buildings. At the Laboratory of the Institute of Earthquake Engineering and Engineering Seismology in Skopje, comparative full-scale shaking-table tests of cross-laminated timber panel systems have been carried out as a part of the full research program on the seismic behavior of these types of wooden systems, realized by Institute of Earthquake Engineering and Engineering Seismology, Skopje, and the Faculty of Civil and Geodetic Engineering (UL FCG), University of Ljubljana. Two different specimens built of cross-laminated timber panels have been tested: specimen containing a pair of single-unit principal wall elements (Specimen 1) and specimen containing a pair of two-unit principal wall elements (Specimen 2). In this article, the results from the shaking-table tests obtained for Specimen 2 and numerically verified by using appropriate finite element method–based computational model are discussed. Reference is also made to the comparative analysis of the test results obtained for both specimens. One of the most important aspects of the research has been the estimation of the seismic energy-dissipation ability of Specimen 1 and 2, via calculation of the equivalent viscous damping using the performed experimental tests. It is generally concluded that Specimen 2 exhibits a similar rocking behavior as Specimen 1, with similar energy-dissipation ability. Both specimens have manifested slightly different dynamic properties, mostly because Specimen 2 has been designed with one anchor more compared to Specimen 1. Forced vibration tests have been used for identification of the effective stiffness on the contacts for Specimen 2. This research is expected to be a contribution toward clarification of the behavior and practical design of cross-laminated timber panel systems subjected to earthquake loading.


2013 ◽  
Vol 446-447 ◽  
pp. 1460-1465 ◽  
Author(s):  
Daniel Y. Abebe ◽  
Jae Hyouk Choi ◽  
Si Jeong Jeong

Recently, building and other civil engineering structures are built with energy dissipating device in order to reduce the damages caused by earthquake. There are a number of seismic energy dissipating device and steel dampers are among many energy dissipation device which is widely used because they are easy for construction, maintenance and low cost. Shear panel damper (SPD) is a type steel damper that dissipates energy by metallic deformation or using hysteresis of material as a source of energy dissipation. Low yield point steel is a good material to be used as a hysteresis damper since it has excellent ductility performance. Nonlinear finite element analysis was carried out to predict the large deformation and hysteretic behavior of SPD using low yield point steel (SLY120) for different width-to-thickness ratio. In order to verify the analysis simulation, quasi-static loading was also conducted and from the comparison a satisfactory result was found.


Author(s):  
Hong-Nan Li ◽  
Gang Li

Earthquake can make structures damaged and crumble. The traditional approach to seismic design has been based upon providing a combination of strength and ductility to resist the imposed loads. Thus, the level of the structure security cannot be achieved, because the disadvantage of the designing method is lack of adjusting capability subjected to an uncertain earthquake. The presence of some damping (energy dissipation) in buildings has been recognized and studied by professional researchers. Passive energy-dissipated system, as a category of vibration control methods, lead the inputting energy from earthquake to special element, thereby reducing energy-dissipating demand on primary structural members and minimizing possible structural damage. In this paper, a new idea of designing metallic damper is presented and realized through the improved dampers that are of a certain bearing forces in plane of plate and suitable energy-dissipating capability by making metallic dampers in different shapes. New types of metallic dampers are called as “dual functions” metallic damper (DFMD), because it not only provides certain stiffness in normal use for a building, but also are of good ability of the seismic energy-dissipation. The structural configuration and mechanical characteristics of the models and prototypes of the DFMDs are analyzed and experimented so as to verify the seismic performance of the dampers. Finally, the DFMDs applied to a new building in China are introduced and numerical results demonstrate the effectiveness of the DFMD.


Sign in / Sign up

Export Citation Format

Share Document