Shear Modulus and Damping Ratio of Cohesive Soils

2008 ◽  
Vol 12 (6) ◽  
pp. 879-913 ◽  
Author(s):  
P. Kallioglou ◽  
Th. Tika ◽  
K. Pitilakis
Materials ◽  
2021 ◽  
Vol 14 (11) ◽  
pp. 2743
Author(s):  
Seongnoh Ahn ◽  
Jae-Eun Ryou ◽  
Kwangkuk Ahn ◽  
Changho Lee ◽  
Jun-Dae Lee ◽  
...  

Ground reinforcement is a method used to reduce the damage caused by earthquakes. Usually, cement-based reinforcement methods are used because they are inexpensive and show excellent performance. Recently, however, reinforcement methods using eco-friendly materials have been proposed due to environmental issues. In this study, the cement reinforcement method and the biopolymer reinforcement method using sodium alginate were compared. The dynamic properties of the reinforced ground, including shear modulus and damping ratio, were measured through a resonant-column test. Also, the viscosity of sodium alginate solution, which is a non-Newtonian fluid, was also explored and found to increase with concentration. The maximum shear modulus and minimum damping ratio increased, and the linear range of the shear modulus curve decreased, when cement and sodium alginate solution were mixed. Addition of biopolymer showed similar reinforcing effect in a lesser amount of additive compared to the cement-reinforced ground, but the effect decreased above a certain viscosity because the biopolymer solution was not homogeneously distributed. This was examined through a shear-failure-mode test.


2011 ◽  
Vol 105-107 ◽  
pp. 1426-1432 ◽  
Author(s):  
De Gao Zou ◽  
Tao Gong ◽  
Jing Mao Liu ◽  
Xian Jing Kong

Two of the most important parameters in dynamic analysis involving soils are the dynamic shear modulus and the damping ratio. In this study, a series of tests were performed on gravels. For comparison, some other tests carried out by other researchers were also collected. The test results show that normalized shear modulus and damping ratio vary with the shear strain amplitude, (1) normalized shear modulus decreases with the increase of dynamic shear strain amplitude, and as the confining pressure increases, the test data points move from the low end toward the high end; (2) damping ratio increases with the increase of shear strain amplitude, damping ratio is dependent on confining pressure where an increase in confining pressure decreased damping ratio. According to the test results, a reference formula is proposed to evaluate the maximum dynamic shear modulus, the best-fit curve and standard deviation bounds for the range of data points are also proposed.


2011 ◽  
Vol 374-377 ◽  
pp. 1391-1395
Author(s):  
Xue Song Lu ◽  
Wei Xiang

Based on the red clay of Wuhan reinforced by Ionic Soil Stabilizer, the red clay soil is treated by different matches of ISS at first, then is tested in the Atterberg limits test and dynamic triaxia test. The results show that the plastic index decreases, and the red clay were greatly improved under the dynamic condition, the maximum dynamic shear modulus ratio acquired an incensement of 27.72% on average after mixing the ISS into the red clay. In addition, It was concluded that the confining pressure influenced the dynamic shear modulus and damping ratio to a certain extent. Given the same strain conditions, with the incensement of confining pressure increases, the dynamic shear modulus increased and the damping ratio decreased. Moreover, when plotting the dynamic shear modulus versus the dynamic shear strain, the similar curve can be formed for both the natural soil and the modified one, the dynamic shear modulus monotonously decreased with the incensement of the dynamic shear strain. However, the value of dynamic shear modulus differed in the same shear strain between the natural soil and the soil modified by ISS.


2018 ◽  
Vol 36 (5) ◽  
pp. 3159-3171 ◽  
Author(s):  
Hirochika Hayashi ◽  
Takahiro Yamanashi ◽  
Hijiri Hashimoto ◽  
Masahiko Yamaki

2012 ◽  
Vol 204-208 ◽  
pp. 557-561
Author(s):  
Hong Yan Xi ◽  
Jun Hua Zhang ◽  
Jing Sun ◽  
Jing Li ◽  
You Qing Wang ◽  
...  

Strong earthquake ground motion leads to residual displacements of gravity retaining walls. Since large deformation occurs in foundation soil, nonlinear mechanical behavior should not be neglected in numerical modeling. The inversion methodology in geophysics is borrowed here to study the nonlinearity, i.e. the variation of shear modulus and damping ratio with the increase of shear strain of soil. A simplified model for the seismic displacement of retaining walls is combined with a genetic algorithm for the inversion. The dynamic shear modulus and damping ratio curves, representing the nonlinear property of foundation soil in a centrifuge test for gravity retaining walls, is obtained by the use of an inversion scheme. The result indicates that, for low level of shear strain, the shear modulus is larger than that used in the literature, implying that the model ground may be stiffer than expectation. For high level of shear strain, the inverted damping ratio is larger than the conventional one, which has efficiently suppressed an overestimation of seismic displacements. It is also displayed that the inversion method is an effective way to obtain quantitatively the dynamic nonlinearity of foundation soil of gravity retaining walls.


2011 ◽  
Vol 243-249 ◽  
pp. 2050-2054 ◽  
Author(s):  
Pei Hsun Tsai ◽  
Sheng Huoo Ni

In this paper the dynamic property (shear modulus and damping ratio) of cement-stabilized soil is studied with using the resonant column test. The amount of cement admixed, the magnitude of confining pressure, and shearing strain amplitude are the parameters considered. Test results show that the maximum shear modulus of cement-stabilized soil increases with increasing confining pressure, the minimum damping ratio decreases with increasing confining pressure. The shear modulus of cement-stabilized soil decreases with increasing shearing strain while the damping ratio increases with increasing shearing strain. In the paper the relationship of shear modulus versus shearing strain is fitted into the Ramberg-Osgood equations using regression analysis.


Sign in / Sign up

Export Citation Format

Share Document