Reliability Based Optimal Tuning of Magneto-Rheological Elastomer for Efficient Structural Control against Non-Stationary Ground Motion

Author(s):  
Sourav Das ◽  
Arunasis Chakraborty ◽  
Sandip Das
2020 ◽  
Vol 15 (3) ◽  
pp. 37-48
Author(s):  
Zubair Rashid Wani ◽  
Manzoor Ahmad Tantray

The present research work is a part of a project was a semi-active structural control technique using magneto-rheological damper has to be performed. Magneto-rheological dampers are an innovative class of semi-active devices that mesh well with the demands and constraints of seismic applications; this includes having very low power requirements and adaptability. A small stroke magneto-rheological damper was mathematically simulated and experimentally tested. The damper was subjected to periodic excitations of different amplitudes and frequencies at varying voltage. The damper was mathematically modeled using parametric Modified Bouc-Wen model of magneto-rheological damper in MATLAB/SIMULINK and the parameters of the model were set as per the prototype available. The variation of mechanical properties of magneto-rheological damper like damping coefficient and damping force with a change in amplitude, frequency and voltage were experimentally verified on INSTRON 8800 testing machine. It was observed that damping force produced by the damper depended on the frequency as well, in addition to the input voltage and amplitude of the excitation. While the damping coefficient (c) is independent of the frequency of excitation it varies with the amplitude of excitation and input voltage. The variation of the damping coefficient with amplitude and input voltage is linear and quadratic respectively. More ever the mathematical model simulated in MATLAB was in agreement with the experimental results obtained.


2008 ◽  
Vol 56 ◽  
pp. 218-224
Author(s):  
Maguid H.M. Hassan

Smart control devices have gained a wide interest in the seismic research community in recent years. Such interest is triggered by the fact that these devices are capable of adjusting their characteristics and/or properties in order to counter act adverse effects. Magneto-Rheological (MR) dampers have emerged as one of a range of promising smart control devices, being considered for seismic applications. However, the reliability of such devices, as a component within a smart structural control scheme, still pause a viable question. In this paper, the reliability of MR dampers, employed as devices within a smart structural control system, is investigated. An integrated smart control setup is proposed for that purpose. The system comprises a smart controller, which employs a single MR damper to improve the seismic response of a single-degree-of-freedom system. The smart controller, in addition to, a model of the MR damper, is utilized in estimating the damper resistance force available to the system. On the other hand, an inverse dynamics model is utilized in evaluating the required damper resistance force necessary to maintain a predefined displacement pattern. The required and supplied forces are, then, utilized in evaluating the reliability of the MR damper. This is the first in a series of studies that aim to explore the effect of other smart control techniques such as, neural networks and neuro fuzzy controllers, on the reliability of MR dampers.


2021 ◽  
pp. 107754632110004
Author(s):  
Zubair R Wani ◽  
Manzoor Tantray

The application and optimization of control systems with multiple magneto-rheological dampers integrated into a civil engineering structure is a challenging task. The performance of the control system is strongly linked with the location and arrangement of control devices, and the optimal placement of control devices is inherently linked with the performance objective of the control algorithm. Therefore, for semi-active control devices, the placement algorithm should be well rooted within the control algorithm, for effective structural control. This article proposes response-based adaptive control strategies embedded with the device location optimization algorithm. The acceleration and inter-story drift responses of the structure are considered as the performance objective for two separate control strategies. The flexibility of this approach lies in the fact that the design algorithm for control and location of magneto-rheological dampers can be engineered based on the performance criteria of the system. This study involves numerical simulation of an actual five-story framed structure. The simulation results indicated that the seismic performance of the structure is strongly linked with the number, placement of the magneto-rheological damper, and the performance objective of the control strategy used. Also, the configuration and corresponding control provided by the response-based adaptive strategies performed better than the configuration predicted by the benchmark genetic algorithm using the H2/LQG controller.


2021 ◽  
Vol 7 (1) ◽  
Author(s):  
B. G. Kavyashree ◽  
Shantharam Patil ◽  
Vidya S. Rao

AbstractIn earlier days, the only way to resist the lateral loads was to increase the lateral strength of the structure obtained by making larger cross sections and massive buildings. Structural control is one of the solutions and important topics in both points of view of security and comfort in recent years. To reduce the effect of seismic energy, one of the structural forms used is the outrigger. In recent years, supplementary devices are installed into the outrigger structure so that damping of the structure increases and helps in mitigating the vibration, this concept is called damped outrigger. In this study, a damped outrigger structure replicating St. Francis Shangri-La Place skyscraper is excited for the El-Centro earthquake, and the Kobe earthquake is numerically modeled with viscous dampers and Magneto-Rheological damper to compare its effectiveness. The finite element approach is used for the analysis of the structure using Bernoulli’s Euler beam theory in modeling the core of the structure as a beam element. The state-space approach is used in modeling the structure, dampers, and controller interface in MATLAB and Simulink, then results are obtained for the peak value of displacement, acceleration, and mean values of the response of the structure. The results are discussed, which shows the significant distinction between uncontrolled and controlled responses.


2003 ◽  
Vol 03 (01) ◽  
pp. 55-70 ◽  
Author(s):  
ALESSANDRO BARATTA ◽  
OTTAVIA CORBI

Magneto-rheological liquids are controllable liquids that under the action of a magnetic field can reversibly pass from the linear viscous liquid state with free-flow to the semi-solid one with a controlled stress-state. They are composed of typically non-colloidal magnetic micronized particles and possess a load carrying capacity higher than other, more controllable, fluids, such as electro-rheological liquids; moreover they are less sensitive to impurities and contaminations that may possibly occur in manufacturing. in the paper, the most suitable models for simulation of such devices are investigated with emphasis on evaluation of their efficiency as structural control systems.


Sign in / Sign up

Export Citation Format

Share Document