scholarly journals Fatty acid content profile and main constituents of Corylus avellana kernel in wild type and cultivars growing in Italy

2016 ◽  
Vol 31 (2) ◽  
pp. 204-209 ◽  
Author(s):  
M. U. Granata ◽  
F. Bracco ◽  
L. Gratani ◽  
R. Catoni ◽  
F. Corana ◽  
...  
2008 ◽  
Vol 74 (19) ◽  
pp. 5882-5890 ◽  
Author(s):  
Vineet K. Singh ◽  
Dipti S. Hattangady ◽  
Efstathios S. Giotis ◽  
Atul K. Singh ◽  
Neal R. Chamberlain ◽  
...  

ABSTRACT Staphylococcus aureus is a major community and nosocomial pathogen. Its ability to withstand multiple stress conditions and quickly develop resistance to antibiotics complicates the control of staphylococcal infections. Adaptation to lower temperatures is a key for the survival of bacterial species outside the host. Branched-chain α-keto acid dehydrogenase (BKD) is an enzyme complex that catalyzes the early stages of branched-chain fatty acid (BCFA) production. In this study, BKD was inactivated, resulting in reduced levels of BCFAs in the membrane of S. aureus. Growth of the BKD-inactivated mutant was progressively more impaired than that of wild-type S. aureus with decreasing temperature, to the point that the mutant could not grow at 12�C. The growth of the mutant was markedly stimulated by the inclusion of 2-methylbutyrate in the growth medium at all temperatures tested. 2-Methylbutyrate is a precursor of odd-numbered anteiso fatty acids and bypasses BKD. Interestingly, growth of wild-type S. aureus was also stimulated by including 2-methylbutyrate in the medium, especially at lower temperatures. The anteiso fatty acid content of the BKD-inactivated mutant was restored by the inclusion of 2-methylbutyrate in the medium. Fluorescence polarization measurements indicated that the membrane of the BKD-inactivated mutant was significantly less fluid than that of wild-type S. aureus. Consistent with this result, the mutant showed decreased toluene tolerance that could be increased by the inclusion of 2-methylbutyrate in the medium. The BKD-inactivated mutant was more susceptible to alkaline pH and oxidative stress conditions. Inactivation of the BKD enzyme complex in S. aureus also led to a reduction in adherence of the mutant to eukaryotic cells and its survival in a mouse host. In addition, the mutant offers a tool to study the role of membrane fluidity in the interaction of S. aureus with antimicrobial substances.


2015 ◽  
Vol 34 (9) ◽  
pp. 1489-1498 ◽  
Author(s):  
Won Park ◽  
Yufeng Feng ◽  
Hyojin Kim ◽  
Mi Chung Suh ◽  
Sung-Ju Ahn

Author(s):  
C. S. Bricker ◽  
S. R. Barnum ◽  
B. Huang ◽  
J. G. Jaworskl

Cyanobacteria are Gram negative prokaryotes that are capable of oxygenic photosynthesis. Although there are many similarities between eukaryotes and cyanobacteria in electron transfer and phosphorylation during photosynthesis, there are two features of the photosynthetic apparatus in cyanobacteria which distinguishes them from plants. Cyanobacteria contain phycobiliproteins organized in phycobilisomes on the surface of photosynthetic membrane. Another difference is in the organization of the photosynthetic membranes. Instead of stacked thylakolds within a chloroplast envelope membrane, as seen In eukaryotes, IntracytopIasmlc membranes generally are arranged in three to six concentric layers. Environmental factors such as temperature, nutrition and light fluency can significantly affect the physiology and morphology of cells. The effect of light Intensity shifts on the ultrastructure of Internal membrane in Anabaena variabilis grown under controlled environmental conditions was examined. Since a major constituent of cyanobacterial thylakolds are lipids, the fatty acid content also was measured and correlated with uItrastructural changes. The regulation of fatty acid synthesis in cyanobacteria ultimately can be studied if the fatty acid content can be manipulated.


2016 ◽  
Vol 2 (1) ◽  
pp. 37-42 ◽  
Author(s):  
J.M. Pino Moreno ◽  
A. Ganguly

In the present paper we have determined the fatty acid content of some edible insects of Mexico. A comparative analysis of the insect species studied in this research showed that caproic acid was present in a minimal proportion which ranged between 0.01 for Periplaneta americana (nymphs) and 0.06 (g/100 g, dry basis) for Euschistus strenuus. The highest proportion of caprilic acid (0.09) was found in Tenebrio molitor (adults). Atta sp. had the highest amount of capric acid (0.26). Polistes sp. was found to be rich in lauric acid (0.77) and for myristic acid it had the highest content (5.64). Dactylopius sp. and E. strenuus were rich in palmitic acid (14.89). Euschistus taxcoensis had the highest quantity of palmitoleic acid (12.06). Llaveia axin exhibited the highest quantity of stearic acid (22.75). Polistes sp. was found to be rich in oleic acid (38.28). The highest quantity of linoleic acid was observed in T. molitor (larvae) (10.89), and in L. axin the highest content of linolenic acid (7.82) was obtained. A comparison between the species under the present investigation revealed that, in general, the insects are poor in caproic, caprilic, capric, lauric, myristic, palmitoleic and linolenic acids, because the quantities were either minimal or could not be detected at all. They had moderate quantities of stearic, palmitic and linoleic acids and had high quantities of oleic acid. Finally it was concluded that although a particular insect species is unable to fulfil the total fatty acid need for a human, if consumed in combination they could definitely be able to supply a good amount of this highly valued nutrient.


Diversity ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 105
Author(s):  
Amirah Yuslan ◽  
Sharifah Najuwa ◽  
Atsushi Hagiwara ◽  
Mazlan A. Ghaffar ◽  
Hidayu Suhaimi ◽  
...  

Salinity is a known factor in shaping population dynamics and community structure through direct and indirect effects on aquatic ecosystems. Salinity changes further influence food webs through competition and predation. The responses of Moina macrocopa (Cladocera) collected from Setiu Wetland lagoon (Terengganu) was evaluated through manipulative laboratory experiments to understand the ability of M. macrocopa to tolerate high salinity stress. Specifically, the fatty acid composition, growth, survival, and reproduction of this cladocerans species was examined. Sodium chloride (NaCl) as used in the treatments water with the concentration 0, 4, 6, 8, 12, and 15 salinity. Fatty acid levels were determined using Gas Chromatography and Mass Spectrophotometry (GC-MS). The results indicated that optimal conditions produced the highest fatty acid content, especially the polyunsaturated fatty acid content, such as EPA (eicosapentaenoic acid), ALA (alpha-linoleic acid), ARA (arachidonic acid), and DHA (docosahexaenoic acid). Furthermore, M. macrocopa survival was best at salinity 0, with a percentage of 98%, whereas the opposite occurred at salinity 15, with approximately 20% of viable animals surviving. Besides, M. macrocopa also showed the highest reproduction rate at salinity 0 (e.g., average initial age of reproduction, 4.33 ± 0.58 days) compared with other salinities level. Interestingly, the difference in growth at different salinities was not evident, an unusual finding when considering adverse effects such as osmoregulation pressure on the organism. Based on the results, we conclude that M. macrocopa can only tolerate salinity below salinity 8 and cannot withstand stressful environmental conditions associated with salinities above 8.


2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Roel M. Maas ◽  
Yale Deng ◽  
Yueming Dersjant-Li ◽  
Jules Petit ◽  
Marc C. J. Verdegem ◽  
...  

AbstractSustainable aquafeed production requires fishmeal replacement, leading to an increasing use of plant-derived ingredients. As a consequence, higher levels of antinutritional substances, such as non-starch polysaccharides and phytate, are present in aquafeeds, with negative effects on fish performance, nutrient digestibility and overall gut health. To alleviate these negative effects, providing exogenous digestive enzymes and/or probiotics can be an effective solution. In this study, we tested the effect of dietary supplementation of enzymes (phytase and xylanase) and probiotics (three strains of Bacillus amyloliquefaciens) on nutrient digestion kinetics and volatile fatty acid content along the gut, and the distal gut microbiome diversity in Nile tilapia. Chyme volatile fatty content was increased with probiotic supplementation in the proximal gut, while lactate content, measured for the first time in vivo in fish, decreased with enzymes along the gut. Enzyme supplementation enhanced crude protein, Ca and P digestibility in proximal and middle gut. Enzymes and probiotics supplementation enhanced microbial interactions as shown by network analysis, while increased the abundance of lactic acid bacteria and Bacillus species. Such results suggest that supplementation with exogenous enzymes and probiotics increases nutrient availability, while at the same time benefits gut health and contributes to a more stable microbiome environment.


Sign in / Sign up

Export Citation Format

Share Document