Optimising natural ventilation using courtyard strategies: CFD simulation of a G + 1 office building in Madinah

2020 ◽  
Vol 39 (7) ◽  
pp. 659-684 ◽  
Author(s):  
Hanan M. Taleb ◽  
Taqwa Wriekat ◽  
Hanan Hashaykeh
Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 406 ◽  
Author(s):  
Xiaoyu Ying ◽  
Yanling Wang ◽  
Wenzhe Li ◽  
Ziqiao Liu ◽  
Grace Ding

This paper presents a study of the effects of wind-induced airflow through the urban built layout pattern using statistical analysis. This study investigates the association between typically enclosed office building layout patterns and the wind environment. First of all, this study establishes an ideal site model of 200 m × 200 m and obtains four typical multi-story enclosed office building group layouts, namely the multi-yard parallel opening, the multi-yard returning shape opening, the overall courtyard parallel opening, and the overall courtyard returning shape opening. Then, the natural ventilation performance of different building morphologies is further evaluated via the computational fluid dynamics (CFD) simulation software Phoenics. This study compares wind speed distribution at an outdoor pedestrian height (1.5 m). Finally, the natural ventilation performance corresponding to the four layout forms is obtained, which showed that the outdoor wind environment of the multi-yard type is more comfortable than the overall courtyard type, and the degree of enclosure of the building group is related to the advantages and disadvantages of the outdoor wind environment. The quantitative relevance between building layout and wind environment is examined, according to which the results of an ameliorated layout proposal are presented and assessed by Phoenics. This research could provide a method to create a livable urban wind environment.


2014 ◽  
Vol 554 ◽  
pp. 696-700 ◽  
Author(s):  
Nur Farhana Mohamad Kasim ◽  
Sheikh Ahmad Zaki ◽  
Mohamed Sukri Mat Ali ◽  
Ahmad Faiz Mohammad ◽  
Azli Abd Razak

Wind-induced ventilation is widely acknowledged as one of the best approaches for inducing natural ventilation. Computational fluid dynamics (CFD) technique is gaining popularity among researchers as an alternative for experimental methods to investigate the behavior of wind-driven ventilation in building. In this present paper, Reynolds averaged Navier-Stokes equation (RANS) k-ε model approach is considered to simulate the airflow on a simplified cubic building with an opening on a single façade. Preliminary simulation using models from previous experiment indicates the reliability of OpenFOAM, the open source software that will be used in this study. The results obtained in this study will better define options for our future study which aims to explore how different buildings arrays modify the airflow inside and around a naturally ventilated building.


2013 ◽  
Vol 361-363 ◽  
pp. 833-844
Author(s):  
Chong Jie Wang ◽  
Wei Wei Liu

Indoor fresh air distribution, temperature stratification and temperature distribution are consider to be the essential indicators when comes to evaluation of the comfort level for internal ventilation environment, particularly for natural ventilated space as target office building. It can be identified that the targeting building has been well designed in the respect of natural ventilation strategies where both cross and stack strategies have been adopted, but it is also obvious that under combined buoyancy and wind driven mode alternative problems appears.


2019 ◽  
Vol 111 ◽  
pp. 04011
Author(s):  
Catalin Lungu ◽  
Florin Baltaretu

In this paper the authors describe a HVAC innovative system using an integrated greenhouse for heating and cooling an office building. The ventilation system allows natural (night) or mechanical ventilation and the passive cooling during the summer, including cold storage in the building structure and the PCM plywood and the refrigeration energy use during the day. Natural ventilation occurs when the wind or the Venturi effect, created by the « hat » that supports the photovoltaic panels, is strong enough; otherwise, a variable speed exhaust fan mounted on top of the building is used. The plants inside the greenhouse can produce O2 under certain conditions necessary for refreshing the ventilation air. The environment of the greenhouse allows air humidification naturally, without the use of humidifiers. If the greenhouse is sufficiently insulated in winter, it can be used in the ventilation process: the air intake from offices through the greenhouse, humidified and enriched in O2 (premixed, if necessary, with fresh air) reaches the general air treatment unit, and then sent back. The process is similar in the summer, but without recirculation, due to the humidity of the air extracted from offices. Stale air humidification enhances the thermal transfer process from the desiccant collector.


2019 ◽  
Vol 111 ◽  
pp. 01085
Author(s):  
Hiroshi Muramatsu ◽  
Tatsuo Nobe

In this study, an office building in Japan that incorporates energy-saving features and environmental technologies was investigated. This office building features a green façade, natural ventilation, a concrete slab with no suspended ceilings, and thermo-active building systems. Two airconditioning systems were installed in this building—a ceiling radiation air-conditioning system and a whole floor-blow off air conditioning system. In addition, a natural ventilation system was installed. We surveyed the heat flux of the ceiling surface and indoor thermal environment of this building from 2015 through 2016. The ceiling using the heat storage amount of concrete maintains a constant temperature in the workplace during as well as after office hours. We also performed detailed measurements of the heat flux of the ceiling surface and indoor thermal environment in the summer of 2017. The results showed that the ceiling radiation air-conditioning system provided a stable thermal environment. Furthermore, we report that making use of the thermal behavior of the skeleton improved the operation of the ceiling radiation airconditioning system.


Author(s):  
R Widiastuti ◽  
M I Hasan ◽  
C N Bramiana ◽  
P U Pramesti

2014 ◽  
Vol 539 ◽  
pp. 55-58
Author(s):  
Jun Zhou ◽  
Xiao Hui Liu

This paper establishes computer CFD simulation mathematical model of large commercial buildings according to the principle of cubic interpolation function and determines the cubic interpolation function based on triangular elements method. It concludes the cubic polynomial in the process of simulation which improves the efficiency of computer simulation. This paper introduces modeling process and flow diagram of simulation process of numerical simulation of natural ventilation simulation of commercial building. It also simulates the indoor ventilation of building which treats the logistics field model of commercial tower building as the object of study. It concludes two-dimensional and three-dimensional contours of air and humidity. Finally, this paper gets the environmental distribution of the temperature through the simulation calculation and draws temperature change curve with distance which provides technical reference for the design of ventilation safe indoor.


Sign in / Sign up

Export Citation Format

Share Document