Trace element contents in spring barley (Hordeum vulgare L.) and white mustard (Synapis alba L.) following the remediation of cobalt-contaminated soil

Author(s):  
Milena Kosiorek ◽  
Mirosław Wyszkowski
Minerals ◽  
2020 ◽  
Vol 10 (5) ◽  
pp. 429
Author(s):  
Milena Kosiorek ◽  
Mirosław Wyszkowski

This study was undertaken to determine the effects of various substances on soil contaminated with cobalt (Co) on the mass and content of cobalt in the main crop—spring barley (Hordeum vulgare L.)—and the after-crop—white mustard (Synapis alba L.). Manure, clay, charcoal, zeolite, and calcium oxide were used for phytostabilization. Cobalt was applied in the form of CoCl2 in doses of 0, 20, 40, 80, 160, and 320 mg/kg soil. Amendments in the form of manure, clay, charcoal, and zeolite were applied in an amount of 2% in relation to the weight of the soil in a pot, with calcium oxide at a dose of 1.30 g CaO/kg of soil. The highest cobalt doses resulted in a significant reduction in yield of both plants and in tolerance index for cobalt. Increasing contamination of soil with cobalt resulted in a major and significant increase in its content in plants and a reduction in cobalt translocation factor in both plants. Amendments used in phytostabilization had a significant effect on growth and development of oat and content of cobalt in plants. The strongest effect on the yield of above-ground parts was exerted by manure (both plants) and calcium oxide (white mustard), while the strongest effect on weight of roots was exerted by calcium oxide (both plants) and zeolite (white mustard). The addition of manure, zeolite and calcium oxide to soil caused an increase of the tolerance index for both plants, while the addition of clay only had a positive effect for white mustard. All substances used in phytostabilization (except zeolite) decreased cobalt content of roots, and manure and calcium oxide in above-ground parts of spring barley; manure and zeolite only in above-ground parts, and calcium oxide in both organs of white mustard. Most of them also reduced bioconcentration of cobalt in above-ground parts, calcium oxide decreased cobalt content in roots of both plants, and manure in roots of spring barley. The effect on cobalt translocation was less clear, but most substances used in phytostabilization increased the transfer of cobalt from the soil to plants. White mustard had higher ability to accumulate cobalt than spring barley.


2018 ◽  
Vol 1 (1) ◽  
pp. 1-13

Background: Thyroid cancer is an internationally important health problem. The aim of this exploratory study was to evaluate whether significant changes in the thyroid tissue levels of Ag, Co, Cr, Fe, Hg, Rb, Sb, Sc, Se, and Zn exist in the malignantly transformed thyroid. Methods: Thyroid tissue levels of ten trace elements were prospectively evaluated in 41 patients with thyroid malignant tumors and 105 healthy inhabitants. Measurements were performed using non-destructive instrumental neutron activation analysis with high resolution spectrometry of long-lived radionuclides. Tissue samples were divided into two portions. One was used for morphological study while the other was intended for trace element analysis. Results: It was found that contents of Ag, Co, Cr, Hg, and Rb were significantly higher (approximately 12.8, 1.4, 1.6, 19.6, and 1.7 times, respectively) in cancerous tissues than in normal tissues. Conclusions: There are considerable changes in trace element contents in the malignantly transformed tissue of thyroid.


Author(s):  
O. A. Zadorozhna ◽  
T. P. Shyianova ◽  
M.Yu. Skorokhodov

Seed longevity of 76 spring barley gene pool samples (Hordeum vulgare L. subsp. distichon, convar. distichon: 56 nutans Schubl., two deficience (Steud.) Koern., two erectum Rode ex Shuebl., two medicum Koern.; convar. nudum (L.) A.Trof.: one nudum L. та subsp. vulgare: convar. vulgare: nine pallidum Ser., three rikotense Regel.; convar. coeleste (L.) A.Trof.: one coeleste (L.) A.Trof.) from 26 countries, 11 years and four places of reproduction was analyzed. Seeds with 5–8% moisture content were stored in chamber with unregulated and 4oC temperature. The possibility of seed storage under these conditions for at least 10 years without significant changes in germination has been established. The importance of meteorological conditions in the formation and ripening of seeds for their longevity is confirmed. The relationship between the decrease of barley seeds longevity and storage conditions, amount of rainfall, temperature regime during the growing season of plants is discussed.


Urolithiasis ◽  
1989 ◽  
pp. 229-231
Author(s):  
J. Hofbauer ◽  
I. Steffan ◽  
H. Schwetz ◽  
G. Vujicic ◽  
O. Zechner

2016 ◽  
Vol 39 (5) ◽  
pp. 1159-1177 ◽  
Author(s):  
R. Jiménez-Ballesta ◽  
F. J. García-Navarro ◽  
S. Bravo ◽  
J. A. Amorós ◽  
C. Pérez-de-los-Reyes ◽  
...  

2011 ◽  
Vol 184 (7) ◽  
pp. 4517-4538 ◽  
Author(s):  
Uwe Buczko ◽  
Rolf O. Kuchenbuch ◽  
Walter Übelhör ◽  
Ludwig Nätscher

Sign in / Sign up

Export Citation Format

Share Document