Review of Marine Hydrokinetic Power Generation and Power Plant

2015 ◽  
Vol 43 (12) ◽  
pp. 1422-1433 ◽  
Author(s):  
Eduard Muljadi ◽  
Yi-Hsiang Yu
2021 ◽  
Vol 11 (4) ◽  
pp. 1776
Author(s):  
Young Seo Kim ◽  
Han Young Joo ◽  
Jae Wook Kim ◽  
So Yun Jeong ◽  
Joo Hyun Moon

This study identified the meteorological variables that significantly impact the power generation of a solar power plant in Samcheonpo, Korea. To this end, multiple regression models were developed to estimate the power generation of the solar power plant with changing weather conditions. The meteorological data for the regression models were the daily data from January 2011 to December 2019. The dependent variable was the daily power generation of the solar power plant in kWh, and the independent variables were the insolation intensity during daylight hours (MJ/m2), daylight time (h), average relative humidity (%), minimum relative humidity (%), and quantity of evaporation (mm). A regression model for the entire data and 12 monthly regression models for the monthly data were constructed using R, a large data analysis software. The 12 monthly regression models estimated the solar power generation better than the entire regression model. The variables with the highest influence on solar power generation were the insolation intensity variables during daylight hours and daylight time.


Author(s):  
Wancai Liu ◽  
Hui Zhang

Gas turbine is widely applied in power-generation field, especially combined gas-steam cycle. In this paper, the new scheme of steam turbine driving compressor is investigated aiming at the gas-steam combined cycle power plant. Under calculating the thermodynamic process, the new scheme is compared with the scheme of conventional gas-steam combined cycle, pointing its main merits and shortcomings. At the same time, two improved schemes of steam turbine driving compressor are discussed.


Author(s):  
Sreelekha Arun

The energy consumption on global scale is continuously increasing, resulting in rapid use of energy resources available. Solar chimney power generation technology hence began to get growing attention as its basic model needs no depleting resources like fossil fuels for its functioning but only uses sunlight and air as a medium. It takes the advantage of the chimney effect and the temperature difference in the collector that produces negative pressure to cause the airflow in the system, converting solar energy into mechanical energy in order to drive the air turbine generator situated at the base of the chimney. Solar Chimney Power Plant (SCPP) brings together the solar thermal technology, thermal storage technology, chimney technology and air turbine power generation technology. However, studies have shown that even if the chimney is as high as 1000 m, the efficiency achievable is only around 3%. Hence, this review paper intents to put together the new technological advancement that aims to improve the efficiency of SCPP.


2021 ◽  
Vol 114 (sp1) ◽  
Author(s):  
Tae-Woo Kim ◽  
Yeon-Joong Kim ◽  
Jong-Sung Yoon ◽  
Myoung-Kyu Kim

1980 ◽  
Author(s):  
J. Jermanok ◽  
R. E. Keith ◽  
E. F. Backhaus

A new 37-MW, single-shaft gas turbine power plant has been designed for electric power generation, for use in either simple-cycle or combined-cycle applications. This paper describes the design features, instrumentation, installation, test, and initial operation.


Sign in / Sign up

Export Citation Format

Share Document