Influence of solvent system on the optoelectrical properties of PCL/carbon black nanofibers

Author(s):  
Sebnem Duzyer Gebizli ◽  
Saban Cunayev ◽  
Serpil Koral Koc ◽  
Serkan Tezel ◽  
Ahmet Peksoz
2012 ◽  
Vol 125 (S1) ◽  
pp. E342-E347 ◽  
Author(s):  
Sung-Seen Choi ◽  
Song-Hee Im ◽  
Changwoon Nah

2019 ◽  
Vol 9 (3) ◽  
pp. 402 ◽  
Author(s):  
Shengchang Zhang ◽  
Christine Campagne ◽  
Fabien Salaün

Electrosprayed polycaprolactone (PCL) microparticles are widely used in medical tissueengineering, drug control release delivery, and food packaging due to their prominent structuresand properties. In electrospraying, the selection of a suitable solvent system as the carrier of PCL isfundamental and a prerequisite for the stabilization of electrospraying, and the control ofmorphology and structure of electrosprayed particles. The latter is not only critical for diversifyingthe characteristics of electrosprayed particles and achieving improvement in their properties, butalso promotes the efficiency of the process and deepens the applications of electrosprayed particlesin various fields. In order to make it systematic and more accessible, this review mainly concludesthe effects of different solution properties on the operating parameters in electrospraying on theformation of Taylor cone and the final structure as well as the morphology. Meanwhile,correlations between operating parameters and electrospraying stages are summarized as well.Finally, this review provides detailed guidance on the selection of a suitable solvent systemregarding the desired morphology, structure, and applications of PCL particles.


Author(s):  
Akira Tanaka ◽  
David F. Harling

In the previous paper, the author reported on a technique for preparing vapor-deposited single crystal films as high resolution standards for electron microscopy. The present paper is intended to describe the preparation of several high resolution standards for dark field microscopy and also to mention some results obtained from these studies. Three preparations were used initially: 1.) Graphitized carbon black, 2.) Epitaxially grown particles of different metals prepared by vapor deposition, and 3.) Particles grown epitaxially on the edge of micro-holes formed in a gold single crystal film.The authors successfully obtained dark field micrographs demonstrating the 3.4Å lattice spacing of graphitized carbon black and the Au single crystal (111) lattice of 2.35Å. The latter spacing is especially suitable for dark field imaging because of its preparation, as in 3.), above. After the deposited film of Au (001) orientation is prepared at 400°C the substrate temperature is raised, resulting in the formation of many square micro-holes caused by partial evaporation of the Au film.


Author(s):  
P. Sadhukhan ◽  
J. B. Zimmerman

Rubber stocks, specially tires, are composed of natural rubber and synthetic polymers and also of several compounding ingredients, such as carbon black, silica, zinc oxide etc. These are generally mixed and vulcanized with additional curing agents, mainly organic in nature, to achieve certain “designing properties” including wear, traction, rolling resistance and handling of tires. Considerable importance is, therefore, attached both by the manufacturers and their competitors to be able to extract, identify and characterize various types of fillers and pigments. Several analytical procedures have been in use to extract, preferentially, these fillers and pigments and subsequently identify and characterize them under a transmission electron microscope.Rubber stocks and tire sections are subjected to heat under nitrogen atmosphere to 550°C for one hour and then cooled under nitrogen to remove polymers, leaving behind carbon black, silica and zinc oxide and 650°C to eliminate carbon blacks, leaving only silica and zinc oxide.


Sign in / Sign up

Export Citation Format

Share Document