Shaking table test and numerical simulation of the vibration control performance of a tuned mass damper on a transmission tower

Author(s):  
Bin Zhao ◽  
Di Wu ◽  
Zheng Lu
Author(s):  
Nobuo Masaki ◽  
Hisashi Hirata

Recently tuned mass dampers have been installed on three-story prefabricated houses for reducing of traffic-induced vibration and improving living comfort. This tuned mass damper consists of a mass unit, spring units and laminated rubber bearings. The mass is supported by four laminated rubber bearings, and spring units are used for adjusting the natural frequency of the tuned mass damper to the optimal value. Vibration control performance of this type of tuned mass dampers is deteriorated when the natural frequency of the house is changed. To solve this problem, the authors have developed a damping coupled tuned mass damper. In this type of tuned mass damper, two mass units having slightly different natural frequencies are coupled by using a damping unit. In this paper, mechanism and vibration control performance of the damping coupled tuned mass damper are described.


Actuators ◽  
2021 ◽  
Vol 10 (3) ◽  
pp. 44
Author(s):  
Qi Wang ◽  
Hong-Nan Li ◽  
Peng Zhang

High-rise structures are normally tall and slender with a large height-width ratio. Under the strong seismic action, such a structure may experience violent vibrations and large deformation. In this paper, a spring pendulum pounding tuned mass damper (SPPTMD) system is developed to reduce the seismic response of high-rise structures. This SPPTMD system consists of a barrel limiter with the built-in viscoelastic material and a spring pendulum (SP). This novel type of tuned mass damper (TMD) relies on the internal resonance feature of the spring pendulum and the collision between the added mass and barrel limiter to consume the energy of the main structure. Based on the Hertz-damper model, the motion equation of the structure-SPPTMD system is derived. Furthermore, a power transmission tower is selected to evaluate the vibration reduction performance of the SPPTMD system. Numerical results revealed that the SPPTMD system can effectively reduce structural vibrations; the reduction ratio is greater than that of the spring pendulum. Finally, the influence of the key parameters on the vibration control performance is conducted for future applications.


Energies ◽  
2020 ◽  
Vol 13 (2) ◽  
pp. 427 ◽  
Author(s):  
Sung Gook Cho ◽  
Seongkyu Chang ◽  
Deokyong Sung

A tuned mass damper (TMD) was developed for mitigating the seismic responses of electrical equipment inside nuclear power plants (NPPs), in particular, the response of an electrical cabinet. A shaking table test was performed, and the frequency and damping ratio were extracted, to confirm the dynamics of the cabinet. Electrical cabinets with and without TMDs were modeled while using SAP2000 software (Version 20, Computers and Structures, NY, USA) that was based on the results. TMDs were designed while using an optimization method and the equations of Den Hartog, Warburton, and Sadek. The numerical models were verified while using the shaking table test results. A sinusoidal sweep wave was applied as input to identify the vibration characteristics of the electrical cabinet over a wide frequency range. Applying various seismic loads that were adjusted to meet the RG 1.60 design response spectrum of 0.3 g then validated the control performance of the TMD. The minimum and maximum response spectrum reduction rates of the designed TMDs were 44.7% and 62.9%, respectively. Further, the amplification factor of the electrical cabinet with the TMD was decreased by 53%, on average, with the proposed optimization method. In conclusion, TMDs can be considered to be an effective way of enhancing the seismic performance of the electrical equipment inside NPPs.


Sign in / Sign up

Export Citation Format

Share Document