A machinable carbon aerogel composite with a low thermal conductivity and enhanced mechanical properties

2018 ◽  
Vol 117 (8) ◽  
pp. 468-475 ◽  
Author(s):  
Changshou Ye ◽  
Rubing Zhang ◽  
Zhimin An ◽  
Baolin Wang
2016 ◽  
Vol 848 ◽  
pp. 454-459
Author(s):  
Cong Wu ◽  
Kang Zhao ◽  
Yu Fei Tang ◽  
Ji Yuan Ma

In order to solve the problem that low thermal conductivity of the plastics for the heat of LED, SiC/Phenolic resin for the heat of LED were fabricated combining powder metallurgy. The effects of particles diameters, content and adding nanoparticles on thermal conductivity of the fabricated composites were investigated, the mechanical properties were also characterized. The experimental results showed that the materials were obtained, and the insulation performance of the fabricated SiC/Phenolic resin was higher than the industry standard one, the thermal conductivity reached 4.1W/(m·k)-1. And the bending strength of the fabricated composites was up to 68.11MPa. The problem of low thermal conductivity of the material is expected to be solved. In addition, it is meaningful for improving LED life.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1199 ◽  
Author(s):  
Marie Viel ◽  
Florence Collet ◽  
Sylvie Prétot ◽  
Christophe Lanos

In order to meet the requirement of sustainable development, building materials are increasingly environmentally friendly. They can be partially or fully bio-based or recycled. This paper looks at the development of fully bio-based composites where agro-resources are valued as bio-based aggregates (hemp) and as binding materials (wheat). In a previous work, a feasibility study simultaneously investigated the processing and ratio of wheat straw required to ensure a gluing effect. In this paper, three kinds of hemp-straw composites are selected and compared with a hemp-polysaccharides composite. The gluing effect is analyzed chemically and via SEM. The developed composites were characterized multi-physically. They showed sufficiently high mechanical properties to be used as insulating materials. Furthermore, they showed good thermal performances with a low thermal conductivity (67.9–69.0 mW/(m · K) at 23 ° C, dry).


Gels ◽  
2021 ◽  
Vol 7 (4) ◽  
pp. 170
Author(s):  
Xiuya Wang ◽  
Pengbo Xie ◽  
Ke Wan ◽  
Yuanyuan Miao ◽  
Zhenbo Liu ◽  
...  

Porous aerogel materials have advantages of a low density, low thermal conductivity and high porosity, and they have broad application prospects in heat insulation and building energy conservation. However, aerogel materials usually exhibit poor mechanical properties. Single-component aerogels are less likely to possess a good thermal stability and mechanical properties. It is necessary to prepare multiple-composite aerogels by reinforcement to meet practical application needs. In this experiment, a simple preparation method for polyvinyl alcohol (PVA)–graphene (GA)–nanocellulose (CNF) ternary composite aerogels was proposed. This is also the first time to prepare ternary composite aerogels by mixing graphene, nanocellulose and polyvinyl alcohol. A GA–CNF hydrogel was prepared by a one-step hydrothermal method, and soaked in PVA solution for 48 h to obtain a PVA–GA–CNF hydrogel. PVA–GA–CNF aerogels were prepared by freeze drying. The ternary composite aerogel has advantages of excellent mechanical properties, a low thermal conductivity and an improved thermal stability, because strong hydrogen bonds form between the PVA, GA and CNF. The composite aerogels were characterized by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffractometry, Brunauer–Emmett–Teller analysis, dynamic thermal analysis, thermogravimetry and thermal constant analysis to characterize the properties of the ternary composite aerogels. The lightweight, low-density and porous PVA–GA–CNF composite aerogels withstood 628 times their mass. The thermal conductivity of the composite aerogels was 0.044 ± 0.005 W/mK at room temperature and 0.045 ± 0.005 W/mK at 70 °C. This solid, low thermal conductivity and good thermal stability PVA–GA–CNF ternary composite aerogel has potential application in thermal insulation.


Carbon ◽  
2016 ◽  
Vol 108 ◽  
pp. 551-560 ◽  
Author(s):  
Xianfeng Jia ◽  
Bowen Dai ◽  
Zhaoxian Zhu ◽  
Jitong Wang ◽  
Wenming Qiao ◽  
...  

2016 ◽  
Vol 4 (28) ◽  
pp. 10801-10805 ◽  
Author(s):  
Fangxin Zou ◽  
Peng Yue ◽  
Xinghua Zheng ◽  
Dawei Tang ◽  
Wenxin Fu ◽  
...  

Novel thiourethane bridged polysilsesquioxane aerogels prepared by a sol–gel process and vacuum drying method exhibit extraordinary mechanical properties and low thermal conductivity.


Sign in / Sign up

Export Citation Format

Share Document