Preparation and Properties of SiC/Phenolic Resin for the Heat of LED

2016 ◽  
Vol 848 ◽  
pp. 454-459
Author(s):  
Cong Wu ◽  
Kang Zhao ◽  
Yu Fei Tang ◽  
Ji Yuan Ma

In order to solve the problem that low thermal conductivity of the plastics for the heat of LED, SiC/Phenolic resin for the heat of LED were fabricated combining powder metallurgy. The effects of particles diameters, content and adding nanoparticles on thermal conductivity of the fabricated composites were investigated, the mechanical properties were also characterized. The experimental results showed that the materials were obtained, and the insulation performance of the fabricated SiC/Phenolic resin was higher than the industry standard one, the thermal conductivity reached 4.1W/(m·k)-1. And the bending strength of the fabricated composites was up to 68.11MPa. The problem of low thermal conductivity of the material is expected to be solved. In addition, it is meaningful for improving LED life.

2008 ◽  
Vol 591-593 ◽  
pp. 271-276 ◽  
Author(s):  
M.A. Martinez ◽  
R. Calabrés ◽  
J. Abenojar ◽  
Francisco Velasco

In this work, ultrahigh carbon steels (UHCS) obtained by powder metallurgy with CIP and argon sintered at 1150°C. Then, they were rolled at 850 °C with a reduction of 40 %. Finally, steels were quenched at 850 and 1000 °C in oil. In each step, hardness, bending strength and wear performance were evaluated. Obtained results are justified with a metallographic study by SEM. Both mechanical properties and wear resistance are highly favoured with the thermomechanical treatment that removes the porosity of the material. Moreover, final quenching highly hardens the material. The obtained material could be used as matrix for tool steels.


2015 ◽  
Vol 667 ◽  
pp. 303-307
Author(s):  
Hang Song Yang ◽  
Shao Ju Hao ◽  
Jun Jie Liang

For its light quality, good thermal conductivity, and excellent electricity shielding performance, Magnesium alloy has been used in industry, agricultural and so on, for rare earth elements can improve the mechanical performance of magnesium alloy, the study of powder metallurgy is influence by rare earth magnesium is few at present. so, in this paper, by mixing powder metallurgy method the Y89 element was added in Mg17Al12 magnesium alloy, the influence of Y89 on microstructure, hardness and compression performance of Mg17Al12 magnesium alloy was studied, The experimental results show that when amount of Y89’s addition, the mechanical performance is more then and when is 1.22%, its mechanical performance is best, hardness is 66.7 HV, compressive strength is 113.6 MPa,increased respectively by 19.7% and 29.3% compared the Mg17Al12 magnesium alloy substrate, and the grain refinement effect of Mg17Al12 magnesium alloy is the best at this time.


Materials ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1199 ◽  
Author(s):  
Marie Viel ◽  
Florence Collet ◽  
Sylvie Prétot ◽  
Christophe Lanos

In order to meet the requirement of sustainable development, building materials are increasingly environmentally friendly. They can be partially or fully bio-based or recycled. This paper looks at the development of fully bio-based composites where agro-resources are valued as bio-based aggregates (hemp) and as binding materials (wheat). In a previous work, a feasibility study simultaneously investigated the processing and ratio of wheat straw required to ensure a gluing effect. In this paper, three kinds of hemp-straw composites are selected and compared with a hemp-polysaccharides composite. The gluing effect is analyzed chemically and via SEM. The developed composites were characterized multi-physically. They showed sufficiently high mechanical properties to be used as insulating materials. Furthermore, they showed good thermal performances with a low thermal conductivity (67.9–69.0 mW/(m · K) at 23 ° C, dry).


2014 ◽  
Vol 668-669 ◽  
pp. 35-38
Author(s):  
Hui Zeng ◽  
Jing Jing Xie ◽  
Hai Tao Liu ◽  
Zheng Yi Fu

ZnO-based ceramic was densified at low temperature by using PSP as binder. The results showed that phenolic resin filled in the ZnO grain boundary layer. The sample has a well hardness of 0.8 GPa and bending strength of 78 MPa. The effect of temperature on the microstructure and mechanical properties was also investigated. It was found that the samples sintered at 300 °C showed higher density and better mechanical properties.


2015 ◽  
Vol 825-826 ◽  
pp. 264-270
Author(s):  
Pascal Seffern ◽  
Lee Klein ◽  
Daniel Tischer ◽  
Antje Liersch

This paper focuses on an iterative algorithm for setting and attaining particle packing densities by means of different concentrations of a matrix material. The mechanical properties of a product, such as fracture toughness, bending strength and thermal conductivity are directly dependent on the amount of matrix material present. A tape cast friction layer was developed, in order to investigate the dependence of the parameters of the RRSB distribution on concentration of matrix material. The results verify the calculation method of a solid mixture and show a linear dependence of the RRSB particle-parameternon the concentration of matrix material (SiC-content).


2015 ◽  
Vol 833 ◽  
pp. 48-51 ◽  
Author(s):  
Wei Shi ◽  
Jia Yan Li ◽  
Qi Fan You ◽  
Tong Lu ◽  
Yi Tan

Matrix derived from resin after carbonization in rigid carbon felt thermal insulation has many advantages. The microstructures and properties of these materials were investigated in this paper. Results showed that matrix tend to accumulate at the intersections of fibers. This can improve mechanical properties and have a little influence on thermal conductivities of the composites. The excellent bending strength of 2.66MPa, compressive strength of 0.91MPa and a high thermal conductivity of 0.81W/(m·K) (at 1500°C) with a matrix concentration of 32.7% is achieved. However, high thermal conductivity is harmful for those materials which are used as thermal insulators.


2012 ◽  
Vol 430-432 ◽  
pp. 866-868
Author(s):  
Xiao Yi Niu ◽  
Yu Wen Bai ◽  
Xue Wang

In this experiment, do smell pine impregnated pressure experiments with small molecules phenolic resin. Prepare different small molecules and phenolic resin by orthogonal.Handle the specimens. Compare the treated material with the smell pine. The optimum condition is the temperature of 60°C, PVA: P (mass ratio) = 3%, P: F: NaOH (molar ratio) = 1:1.2:0.3, the absolute pressure 2.5 Mpa, the temperature of 120 °C hot 15 minutes under the conditions. While smell pine laminated veneer lumber bending strength increased 67.53%.


Sign in / Sign up

Export Citation Format

Share Document