Size-dependent generalized thermo-viscoelastic response analysis of multi-layered viscoelastic laminated nanocomposite account for imperfect interfacial conditions

Author(s):  
Huili Guo ◽  
Fulin Shang ◽  
Xiaogeng Tian ◽  
Hui Zhang
2015 ◽  
Vol 137 (8) ◽  
Author(s):  
Yanbao Ma

Thermal transport across interfaces can play a critical role in nanosystems for thermal management and thermal energy conversion. Here, we show the dependence of the thermal boundary conductance (G) of the interface between a 70-nm Al transducer and a Si substrate on the size of a laser pump diameter (D) in the time-domain thermoreflectance (TDTR) experiments at room temperature. For D ≥ 30 μm, G approaches to a constant where diffusion dominates the heat transfer processes. When D decreases from 30 μm to 3.65 μm, G decreases from 240 to 170 MW/m2K due to the increasing nonlocal effects from nondiffusive heat transport. This finding is vital to our understanding of the thermal boundary conductance: it depends not only on inherent interfacial conditions but also on external heating conditions, which makes the accurate measurements and theoretical predictions of thermal transport across interfaces in micro/nanosystems more challenging.


2020 ◽  
Vol 20 (09) ◽  
pp. 2050100
Author(s):  
Zhen Zhao ◽  
Yiwen Ni ◽  
Shengbo Zhu ◽  
Zhenzhen Tong ◽  
Junlin Zhang ◽  
...  

An accurate buckling response analysis for functionally graded graphene platelet (GPL) reinforced piezoelectric cylindrical nanoshells subject to thermo-electro-mechanical loadings is presented by a rigorous symplectic expansion approach. Three types of GPL reinforced patterns are considered, and the modified Halpin–Tsai model is employed to determine their effective material properties. By using Eringen’s nonlocal stress theory and Reissner’s shell theory, new governing equations are established in the Hamiltonian form. Exact solutions are expanded into symplectic series and three possible forms are derived. A comparison with the existing study is presented to validate the solution and very good agreement is observed. The effects of material and geometrical properties of GPLs, electric voltage and temperature rise on critical buckling stresses are investigated and discussed in detail.


Author(s):  
M. A. Listvan ◽  
R. P. Andres

Knowledge of the function and structure of small metal clusters is one goal of research in catalysis. One important experimental parameter is cluster size. Ideally, one would like to produce metal clusters of regulated size in order to characterize size-dependent cluster properties.A source has been developed which is capable of producing microscopic metal clusters of controllable size (in the range 5-500 atoms) This source, the Multiple Expansion Cluster Source, with a Free Jet Deceleration Filter (MECS/FJDF) operates as follows. The bulk metal is heated in an oven to give controlled concentrations of monomer and dimer which were expanded sonically. These metal species were quenched and condensed in He and filtered to produce areosol particles of a controlled size as verified by mass spectrometer measurements. The clusters were caught on pre-mounted, clean carbon films. The grids were then transferred in air for microscopic examination. MECS/FJDF was used to produce two different sizes of silver clusters for this study: nominally Ag6 and Ag50.


Author(s):  
Lawrence W. Ortiz ◽  
Bonnie L. Isom

A procedure is described for the quantitative transfer of fibers and particulates collected on membrane filters to electron microscope (EM) grids. Various Millipore MF filters (Millipore AA, HA, GS, and VM; 0.8, 0.45, 0.22 and 0.05 μm mean pore size) have been used with success. Observed particle losses have not been size dependent and have not exceeded 10%. With fibers (glass or asbestos) as the collected media this observed loss is approximately 3%.


2020 ◽  
Vol 64 (2) ◽  
pp. 383-396
Author(s):  
Lara K. Krüger ◽  
Phong T. Tran

Abstract The mitotic spindle robustly scales with cell size in a plethora of different organisms. During development and throughout evolution, the spindle adjusts to cell size in metazoans and yeast in order to ensure faithful chromosome separation. Spindle adjustment to cell size occurs by the scaling of spindle length, spindle shape and the velocity of spindle assembly and elongation. Different mechanisms, depending on spindle structure and organism, account for these scaling relationships. The limited availability of critical spindle components, protein gradients, sequestration of spindle components, or post-translational modification and differential expression levels have been implicated in the regulation of spindle length and the spindle assembly/elongation velocity in a cell size-dependent manner. In this review, we will discuss the phenomenon and mechanisms of spindle length, spindle shape and spindle elongation velocity scaling with cell size.


2010 ◽  
Author(s):  
Elizabeth A. Hanchak ◽  
Meredith L. Smith ◽  
Jessie J. Smith ◽  
Marla K. Perna ◽  
Russell W. Brown

Sign in / Sign up

Export Citation Format

Share Document