Three-wave resonant interactions: dark–bright–bright mixed N- and high-order solitons, breathers, and their structures

Author(s):  
Cui-Cui Ding ◽  
Yi-Tian Gao ◽  
Xin Yu ◽  
Fei-Yan Liu ◽  
Xi-Hu Wu
2013 ◽  
Vol 717 ◽  
pp. 612-642 ◽  
Author(s):  
Bryce K. Campbell ◽  
Yuming Liu

AbstractWe consider the problem of nonlinear resonant interactions of interfacial waves with the presence of a linear interfacial instability in an inviscid two-fluid stratified flow through a horizontal channel. The resonant triad consists of a (linearly) unstable wave and two stable waves, one of which has a wavelength that can be much longer than that of the unstable component. Of special interest is the development of the long wave by energy transfer from the base flow due to the coupled effect of nonlinear resonance and interfacial instability. By use of the method of multiple scales, we derive the interaction equations which govern the time evolution of the amplitudes of the interacting waves including the effect of interfacial instability. The solution of the evolution equations shows that depending on the flow conditions, the (stable) long wave can achieve a bi-exponential growth rate through the resonant interaction with the unstable wave. Moreover, the unstable wave can grow unboundedly even when the nonlinear self-interaction effect is included, as do the stable waves in the associated resonant triad. For the verification of the theoretical analysis and the practical application involving a broadbanded spectrum of waves, we develop an effective direct simulation method, based on a high-order pseudo-spectral approach, which accounts for nonlinear interactions of interfacial waves up to an arbitrary high order. The direct numerical simulations compare well with the theoretical analysis for all of the characteristic flows considered, and agree qualitatively with the experimental observation of slug development near the entrance of two-phase flow into a pipe.


Author(s):  
Wenting Xiao ◽  
Yuming Liu ◽  
Dick K. P. Yue

We describe an investigation of the occurrence, statistics, and generation mechanisms of rogue wave in the open sea using direct three-dimensional phase-resolved nonlinear wavefield simulations. To achieve this we develop an efficient nonlinear wavefield simulation capability based on the high-order spectrum method which solves the primitive phase-resolved Euler equations. The simulations account for nonlinear wave-wave interactions up to an arbitrary high order in the wave steepness and are capable of accounting for effects of bottom bathymetry, variable current, and direct physics-based models for wind input and wave breaking dissipation. We apply direct large-scale simulations to obtain a large number of phase-resolved nonlinear wavefields, initially specified by directional wave spectra. The typical spatial-temporal domain size of such numerical nonlinear wavefields is O(103 km2) over evolution time of O(hr). These spatial and temporal scales account for quartet resonant interactions and partially for quintet resonant interactions among wave components in the wavefield. From the simulated nonlinear wavefields, rogue wave events are identified and their occurrence statistics are studied. It is shown that the classic linear theory (i.e. Rayleigh distribution) significantly underestimates the rogue wave occurrence. Second-order theory improves the Rayleigh prediction, but still underestimates the rogue wave occurrence in wavefields with moderately large wave steepness and relatively narrow directional spreading and spectrum bandwidth. The influence of key wave spectrum parameters (such as significant wave height, directional spreading, effective steepness, and spectrum bandwidth) on the rogue wave occurrence is analyzed. The classification of rogue waves according to their configuration is also obtained. The key characteristics of a rogue wave or rogue wave group in terms of kinematics and surface structure are analyzed and quantified. The nonlinear wave simulations, which provide full three-dimensional kinematics and dynamics of rogue wave events, provide a powerful tool for understanding the underlying mechanisms of their generation. They are elucidated by specific examples.


2009 ◽  
Vol 624 ◽  
pp. 225-253 ◽  
Author(s):  
MOHAMMAD-REZA ALAM ◽  
YUMING LIU ◽  
DICK K. P. YUE

We develop a direct numerical method to study the general problem of nonlinear interactions of surface/interfacial waves with variable bottom topography in a two-layer density stratified fluid. We extend a powerful high-order spectral (HOS) method for nonlinear gravity wave dynamics in a homogeneous fluid to the case of a two-layer fluid over non-uniform bottom. The method is capable of capturing the nonlinear interactions among large number of surface/interfacial wave mode and bottom ripple components up to an arbitrary high order. The method preserves exponential convergence with respect to the number of modes of the original HOS and the (approximately) linear effort with respect to mode number and interaction order. The method is validated through systematic convergence tests and comparison to a semi-analytic solution we obtain for an exact nonlinear Stokes waves on a two-layer fluid (in uniform depth). We apply the numerical method to the three classes of generalized Bragg resonances studied in Alam, Liu & Yue (J. Fluid Mech., vol. 624, 2009, p. 225), and compare the perturbation predictions obtained there with the direct simulation results. An important finding is possibly the important effect of even higher-order nonlinear interactions not accounted for in the leading-order perturbation analyses. To illustrate the efficacy of the numerical method to the general problem, we consider a somewhat more complicated case involving two incident waves and three bottom ripple components with wavenumbers that lead to the possibility of multiple Bragg resonances. It is shown that the ensuing multiple (near) resonant interactions result in the generation of multiple new transmitted/reflected waves that fill a broad wavenumber band eventually leading to the loss of order and chaotic motion.


1988 ◽  
Vol 55 (1) ◽  
pp. 225-228
Author(s):  
M. R. Muller ◽  
P. C. Shang

The role of interface thickness on the propagation of high order internal wave modes is examined using simple analytical models for an unmixed, thick interface and one that has been vigorously mixed. It is shown that for the unmixed case, a local maximum in wave speed occurs as the interface grows from zero thickness, but that only for mode-one waves does the maximum point occur within areas of practical significance. When these models are applied to three wave resonant interactions, it is found that vigorous mixing will augment energy transfer rates when the interface thickness surpasses a certain value.


Author(s):  
Y. Ishida ◽  
H. Ishida ◽  
K. Kohra ◽  
H. Ichinose

IntroductionA simple and accurate technique to determine the Burgers vector of a dislocation has become feasible with the advent of HVEM. The conventional image vanishing technique(1) using Bragg conditions with the diffraction vector perpendicular to the Burgers vector suffers from various drawbacks; The dislocation image appears even when the g.b = 0 criterion is satisfied, if the edge component of the dislocation is large. On the other hand, the image disappears for certain high order diffractions even when g.b ≠ 0. Furthermore, the determination of the magnitude of the Burgers vector is not easy with the criterion. Recent image simulation technique is free from the ambiguities but require too many parameters for the computation. The weak-beam “fringe counting” technique investigated in the present study is immune from the problems. Even the magnitude of the Burgers vector is determined from the number of the terminating thickness fringes at the exit of the dislocation in wedge shaped foil surfaces.


Author(s):  
C. M. Sung ◽  
D. B. Williams

Researchers have tended to use high symmetry zone axes (e.g. <111> <114>) for High Order Laue Zone (HOLZ) line analysis since Jones et al reported the origin of HOLZ lines and described some of their applications. But it is not always easy to find HOLZ lines from a specific high symmetry zone axis during microscope operation, especially from second phases on a scale of tens of nanometers. Therefore it would be very convenient if we can use HOLZ lines from low symmetry zone axes and simulate these patterns in order to measure lattice parameter changes through HOLZ line shifts. HOLZ patterns of high index low symmetry zone axes are shown in Fig. 1, which were obtained from pure Al at -186°C using a double tilt cooling holder. Their corresponding simulated HOLZ line patterns are shown along with ten other low symmetry orientations in Fig. 2. The simulations were based upon kinematical diffraction conditions.


Author(s):  
J. M. Zuo ◽  
A. L. Weickenmeier ◽  
R. Holmestad ◽  
J. C. H. Spence

The application of high order reflections in a weak diffraction condition off the zone axis center, including those in high order laue zones (HOLZ), holds great promise for structure determination using convergent beam electron diffraction (CBED). It is believed that in this case the intensities of high order reflections are kinematic or two-beam like. Hence, the measured intensity can be related to the structure factor amplitude. Then the standard procedure of structure determination in crystallography may be used for solving unknown structures. The dynamic effect on HOLZ line position and intensity in a strongly diffracting zone axis is well known. In a weak diffraction condition, the HOLZ line position may be approximated by the kinematic position, however, it is not clear whether this is also true for HOLZ intensities. The HOLZ lines, as they appear in CBED patterns, do show strong intensity variations along the line especially near the crossing of two lines, rather than constant intensity along the Bragg condition as predicted by kinematic or two beam theory.


2003 ◽  
Vol 50 (3-4) ◽  
pp. 375-386
Author(s):  
D. B. MilosÕeviĆ ◽  
W. Becker

Sign in / Sign up

Export Citation Format

Share Document