scholarly journals Green synthesized silver nanoparticles decorated on nanostructured porous silicon as an efficient platform for the removal of organic dye methylene blue

2022 ◽  
Vol 15 (1) ◽  
pp. 106-113
Author(s):  
Nelson Naveas ◽  
Miguel Manso-Silván ◽  
Erico Carmona ◽  
Karla Garrido ◽  
Jacobo Hernández-Montelongo ◽  
...  
2016 ◽  
Vol 40 ◽  
pp. 120-127 ◽  
Author(s):  
Nalan Oya San Keskin ◽  
Nur Koçberber Kılıç ◽  
Gönül Dönmez ◽  
Turgay Tekinay

Nowadays, green and efficient synthetic strategies have been gaining great interest for the synthesis of nanoparticles. In this study, the biosynthesis of silver nanoparticles and its photocatalytic activity for photodegradation of organic dye and antimicrobial property was studied. The initial syntheses of Ag nanoparticles were characterized by UV–Vis spectrophotometer and showed the surface plasmon resonance band at 430-450 nm. Attenuated Total Reflection Fourier Transform Infrared Spectroscopy (ATR-FTIR) study showed evidence that proteins are possible reducing agents. The structure of AgNPs was determined by Scanning electron microscopy (SEM) and Transmission electron microscopy (TEM). SEM and TEM studies revealed the synthesized AgNPs to be spherical. The AgNPs exhibited photocatalytic activity for photodegradation of organic dye such as Methylene Blue. Approximately 18% degradations of methylene blue within 4 h was observed with biosynthesized Ag nanoparticles in the photocatalytic degradation process.


AMB Express ◽  
2021 ◽  
Vol 11 (1) ◽  
Author(s):  
Susanna Gevorgyan ◽  
Robin Schubert ◽  
Mkrtich Yeranosyan ◽  
Lilit Gabrielyan ◽  
Armen Trchounian ◽  
...  

AbstractThe application of green synthesis in nanotechnology is growing day by day. It’s a safe and eco-friendly alternative to conventional methods. The current research aimed to study raw royal jelly’s potential in the green synthesis of silver nanoparticles and their antibacterial activity. Royal jelly served as a reducing and oxidizing agent in the green synthesis technology of colloidal silver nanoparticles. The UV–Vis maximum absorption at ~ 430 nm and fluorescence emission peaks at ~ 487 nm confirmed the presence of Ag NPs. Morphology and structural properties of Ag NPs and the effect of ultrasound studies revealed: (i) the formation of polydispersed and spherical particles with different sizes; (ii) size reduction and homogeneity increase by ultrasound treatment. Antibacterial activity of different concentrations of green synthesized Ag NPs has been assessed on Gram-negative S. typhimurium and Gram-positive S. aureus, revealing higher sensitivity on Gram-negative bacteria.


Molecules ◽  
2021 ◽  
Vol 26 (13) ◽  
pp. 3790
Author(s):  
Pratama Jujur Wibawa ◽  
Muhammad Nur ◽  
Mukhammad Asy’ari ◽  
Wijanarka Wijanarka ◽  
Heru Susanto ◽  
...  

This research aimed to enhance the antibacterial activity of silver nanoparticles (AgNPs) synthesized from silver nitrate (AgNO3) using aloe vera extract. It was performed by means of incorporating AgNPs on an activated carbon nanoparticle (ACNPs) under ultrasonic agitation (40 kHz, 2 × 50 watt) for 30 min in an aqueous colloidal medium. The successful AgNPs synthesis was clarified with both Ultraviolet-Visible (UV-Vis) and Fourier Transform Infrared (FTIR) spectrophotometers. The successful AgNPs–ACNPs incorporation and its particle size analysis was performed using Transmission Electron Microscope (TEM). The brown color suspension generation and UV-Vis’s spectra maximum wavelength at around 480 nm confirmed the existence of AgNPs. The particle sizes of the produced AgNPs were about 5 to 10 nm in the majority number, which collectively surrounded the aloe vera extract secondary metabolites formed core-shell like nanostructure of 8.20 ± 2.05 nm in average size, while ACNPs themselves were about 20.10 ± 1.52 nm in average size formed particles cluster, and 48.00 ± 8.37 nm in average size as stacking of other particles. The antibacterial activity of the synthesized AgNPs and AgNPs-immobilized ACNPs was 57.58% and 63.64%, respectively (for E. coli); 61.25%, and 93.49%, respectively (for S. aureus). In addition, when the AgNPs-immobilized ACNPs material was coated on the cotton and polyester fabrics, the antibacterial activity of the materials changed, becoming 19.23% (cotton; E. coli), 31.73% (polyester; E. coli), 13.36% (cotton; S. aureus), 21.15% (polyester; S. aureus).


Sign in / Sign up

Export Citation Format

Share Document