scholarly journals Transfer Kinetics of Metals from Molten Fission Product Chloride to Liquid Lead Cathode during Electrolysis in Pyrometallurgical Treatment of Highly Radioactive Waste

1996 ◽  
Vol 33 (3) ◽  
pp. 245-249 ◽  
Author(s):  
Masahiro NABESHIMA ◽  
Takafumi SHIMIZU ◽  
Yoshiharu SAKAMURA ◽  
Masahiro SAKATA ◽  
Tadashi INOUE
2014 ◽  
Vol 102 (12) ◽  
Author(s):  
Borja Gonzalez Prieto ◽  
Alessandro Marino ◽  
Jun Lim ◽  
Kris Rosseel ◽  
Johan Martens ◽  
...  

AbstractQualitative and quantitative understanding of Po volatilization under different conditions is of key importance for safety assessments of lead-bismuth eutectic (LBE) based nuclear reactors, spallation targets and accelerator driven systems. In this work we explore the possibilities of the transpiration method in combination with simple models to study the equilibrium and kinetics of Po evaporation from highly diluted solutions in lead-bismuth eutectic between 600 and 1000 ℃ in Ar/5% H


Author(s):  
R. J. Lauf

Fuel particles for the High Temperature Gas-Cooled Reactor (HTGR) contain a layer of pyrolytic silicon carbide to act as a miniature pressure vessel and primary fission product barrier. Optimization of the SiC coating with respect to fuel performance involves four areas of study: (a) characterization of as-deposited SiC coatings; (b) thermodynamics and kinetics of chemical reactions between SiC and fission products; (c) irradiation behavior of SiC in the absence of fission products; and (d) the combined effects of irradiation and fission product interactions. This paper reports the behavior of SiC deposited on fissile fuel particles and irradiated to fast neutron fluences typical of HTGR fuel at end-of-life.


2015 ◽  
Vol 17 (10) ◽  
pp. 1760-1768 ◽  
Author(s):  
E. Curti ◽  
A. Puranen ◽  
D. Grolimund ◽  
D. Jädernas ◽  
D. Sheptyakov ◽  
...  

The long-lived fission product79Se is tightly bound to the UO2lattice in spent nuclear fuel; it will thus be released only very slowly from a geological repository for radioactive waste.


2004 ◽  
Vol 70 (10) ◽  
pp. 6031-6036 ◽  
Author(s):  
Orli Aviam ◽  
Gabi Bar-Nes ◽  
Yehuda Zeiri ◽  
Alex Sivan

ABSTRACT Disposal of low-level radioactive waste by immobilization in cement is being evaluated worldwide. The stability of cement in the environment may be impaired by sulfur-oxidizing bacteria that corrode the cement by producing sulfuric acid. Since this process is so slow that it is not possible to perform studies of the degradation kinetics and to test cement mixtures with increased durability, procedures that accelerate the biodegradation are required. Semicontinuous cultures of Halothiobacillus neapolitanus and Thiomonas intermedia containing thiosulfate as the sole energy source were employed to accelerate the biodegradation of cement samples. This resulted in a weight loss of up to 16% after 39 days, compared with a weight loss of 0.8% in noninoculated controls. Scanning electron microscopy of the degraded cement samples revealed deep cracks, which could be associated with the formation of low-density corrosion products in the interior of the cement. Accelerated biodegradation was also evident from the leaching rates of Ca2+ and Si2+, the major constituents of the cement matrix, and Ca exhibited the highest rate (up to 20 times greater than the control rate) due to the reaction between free lime and the biogenic sulfuric acid. Leaching of Sr2+ and Cs+, which were added to the cement to simulate immobilization of the corresponding radioisotopes, was also monitored. In contrast to the linear leaching kinetics of calcium, silicon, and strontium, the leaching pattern of cesium produced a saturation curve similar to the control curve. Presumably, the leaching of cesium is governed by the diffusion process, whereas the leaching kinetics of the other three ions seems to governed by dissolution of the cement.


Sign in / Sign up

Export Citation Format

Share Document