Effect of mixing chamber venturi, injection timing, compression ratio and EGR on the performance of dual-fuel engine operated with HOME and CNG

2012 ◽  
Vol 5 (3) ◽  
pp. 265-279 ◽  
Author(s):  
N. R. Banapurmath ◽  
Y. H. Basavarajappa ◽  
P. G. Tewari
Author(s):  
Bhaskor J. Bora ◽  
Ujjwal K. Saha

Emulsification is one of the proven techniques to control the pollutants of the diesel engines. The present work attempts to explore the effect of injection timing (IT) of pilot fuel and compression ratio (CR) for an emulsified rice bran biodiesel (RBB)–biogas powered dual fuel diesel engine. A two-phase stable water emulsion of rice bran methyl ester has been prepared by optimizing the factors such as water content (5% and 10%), surfactants (3%), and hydrophilic lipophilic balance (HLB) values (4.3, 5, and 6). The stability of the emulsions is determined on the basis of measurement of mean droplet diameter and stability test. For experimentation, a 3.5 kW single cylinder, direct injection (DI), water cooled, variable CR diesel engine is converted into a biogas run dual fuel diesel engine by connecting a venturi gas mixer at the inlet manifold. A set of combinations comprising CRs of 18, 17.5, and 17, and ITs of 23 deg, 26 deg, 29 deg, and 32 deg before top dead centers (BTDC) at different loading conditions are considered. The investigation demonstrates a maximum brake thermal efficiency (BTE) of 23.62% along with a liquid fuel replacement of 82.22% at pilot fuel IT of 29 deg BTDC and CR of 18. For the same combination, CO and HC emissions are found to be least in all the test cases.


Author(s):  
Emad Elnajjar ◽  
Mohamed Y. E. Selim ◽  
Farag Omar

Investigating experimentally the effects of different fuel types and engine parameters on the overall generated engine noise levels. Engine parameters such as: Engine speed, Injection timing angle, engine loading, different pilot fuel to gases fuel ratio and engine compression ratio. Engine noises due to combustion, turbulent flow and motoring were reported in this study by direct sound pressure level SPL (dB) measurements and compared to the maximum cylinder pressure rise rate with respect to the engine crank angle (dP/dθ)max. Experimental procedures conducted using a Ricardo diesel version variable compression research engine. The study was conducted for three different fuels: single diesel fuel, and dual fuel engine that uses LPG or natural gas. The study for each fuel type covered the following operating parameters range, engine speed from 20–28 rev/sec, injection timing form 20 to 45° BTDC, compression ratio from 16 to 22, load range 2 to 14 N.m, and ratio of pilot to gaseous fuel from 0 to 10%. The study reported the location (crank angle) corresponding to maximum cylinder pressure and max pressure rise rate. Results from testing dual fuel engine with varying design and operating parameters are presented and discussed. The present work reported higher SPL (dB) generated from burning a dual fuel compared to burning diesel fuel only.


Author(s):  
Achinta Sarkar ◽  
Ujjwal K. Saha

The dual fuel concept of diesel engines is gaining popularity because of their ability to use alternative renewable gaseous fuels (natural gas, biogas, producer gas) and liquid fuels (biodiesel, alcohol, and others) simultaneously. The dual fuel mode (DFM) not only reduces the consumption of diesel or substitutes the diesel fuel, but there is an advantage of operating the engine in pure diesel mode (PDM) in case of shortage of gaseous primary fuel. The uses of renewable fuels in such engines have the positive impact on green ecosystem in terms of reduction in NOx and smoke emissions; however, there is the engine derating as performance penalty in comparison to engines operating under PDM. The most influential parameters in DFM engines are the type and flow rate of inducted gaseous fuel, fuel–air equivalence ratio (Φglobal), compression ratio (CR), and injection timing (IT). During the last few decades, the researchers have studied the effect of various parameters to improve the overall performance characteristics (performance, combustion, and emission) of DFM engines. This paper makes an in-depth analysis to unveil the physical characteristics of the crucial parameters of DFM engines with specific reference to the use of biogas with ternary blends (TB) of diesel, biodiesel, and ethanol. The paper addresses the issues on how the gaseous fuel flow rate, preheating of the intake charge, compression ratio, injection timing, and the type of oxygenated fuels dominate the overall performance characteristics.


Sign in / Sign up

Export Citation Format

Share Document