Effect of Dual Fuel Engine Parameters and Fuel Type on Engine Noise Emissions

Author(s):  
Emad Elnajjar ◽  
Mohamed Y. E. Selim ◽  
Farag Omar

Investigating experimentally the effects of different fuel types and engine parameters on the overall generated engine noise levels. Engine parameters such as: Engine speed, Injection timing angle, engine loading, different pilot fuel to gases fuel ratio and engine compression ratio. Engine noises due to combustion, turbulent flow and motoring were reported in this study by direct sound pressure level SPL (dB) measurements and compared to the maximum cylinder pressure rise rate with respect to the engine crank angle (dP/dθ)max. Experimental procedures conducted using a Ricardo diesel version variable compression research engine. The study was conducted for three different fuels: single diesel fuel, and dual fuel engine that uses LPG or natural gas. The study for each fuel type covered the following operating parameters range, engine speed from 20–28 rev/sec, injection timing form 20 to 45° BTDC, compression ratio from 16 to 22, load range 2 to 14 N.m, and ratio of pilot to gaseous fuel from 0 to 10%. The study reported the location (crank angle) corresponding to maximum cylinder pressure and max pressure rise rate. Results from testing dual fuel engine with varying design and operating parameters are presented and discussed. The present work reported higher SPL (dB) generated from burning a dual fuel compared to burning diesel fuel only.

2021 ◽  
pp. 146808742098510
Author(s):  
Carlos Guardiola ◽  
Benjamín Pla ◽  
Pau Bares ◽  
Alvin Barbier

Premixed combustion strategies have the potential to achieve high thermal efficiency and to lower the engine-out emissions such as NOx. However, the combustion is initiated at several kernels which create high pressure gradients inside the cylinder. Similarly to knock in spark ignition engines, these gradients might be responsible of important pressure oscillations with a harmful potential for the engine. This work aims to analyze the in-cylinder pressure oscillations in a dual-fuel combustion engine and to determine the feedback variables, control actuators, and control approach for a safe engine operation. Three combustion modes were examined: fully, highly, and partially premixed, and three indexes were analyzed to characterize the safe operation of the engine: the maximum pressure rise rate, the ringing intensity, and the maximum amplitude of pressure oscillations (MAPO). Results show that operation constraints exclusively based on indicators such as the pressure rise rate are not sufficient for a proper limitation of the in-cylinder pressure oscillations. This paper explores the use of a knock-like controller for maintaining the resonance index magnitude under a predefined limit where the gasoline fraction and the main injection timing were selected as control variables. The proposed strategy shows the ability to maintain the percentage of cycles exceeding the specified limit at a desired threshold at each combustion mode in all the cylinders.


Author(s):  
Jiantong Song ◽  
Zhixin Feng ◽  
Jiangyi Lv ◽  
Hualei Zhang

Abstract The pilot diesel injection timing (θ) significantly affects the combustion and performance of dual-fuel (DF) engines. In order to optimize the θ of a natural gas-diesel DF engine, the influence of θ on combustion, cyclic variation, and performance of a diesel engine fueled with natural gas piloted by diesel under full load at 1200 rpm was investigated. The results indicate that, with the advance in θ, the cylinder pressure, rate of pressure rise (ROPR), and heat release rate (HRR) increase first and then decrease. The mean value of peak cylinder pressure (pmax) rises and the standard deviation increases first and then decreases. The distribution of the crank angle of peak cylinder pressure (φ(pmax)) scatters and approaches the top dead center. The coefficient of variation (COV) in pmax decreases first and then increases while the COV in φ(pmax) obviously increases. The brake power increases first and then decreases while the brake specific fuel consumption (b.s.f.c.) reduces first and then rises. The CO2 and NOx emissions rise first and then reduce while smoke emission decreases first and then increases, but the CO and HC rise.


Author(s):  
Mohamed Y. E. Selim ◽  
M. S. Radwan ◽  
H. E. Saleh

The use of Jojoba Methyl Ester as a pilot fuel was investigated for almost the first time as a way to improve the performance of dual fuel engine running on natural gas or LPG at part load. The dual fuel engine used was Ricardo E6 variable compression diesel engine and it used either compressed natural gas (CNG) or liquefied petroleum gas (LPG) as the main fuel and Jojoba Methyl Ester as a pilot fuel. Diesel fuel was used as a reference fuel for the dual fuel engine results. During the experimental tests, the following have been measured: engine efficiency in terms of specific fuel consumption, brake power output, combustion noise in terms of maximum pressure rise rate and maximum pressure, exhaust emissions in terms of carbon monoxide and hydrocarbons, knocking limits in terms of maximum torque at onset of knocking, and cyclic data of 100 engine cycle in terms of maximum pressure and its pressure rise rate. The tests examined the following engine parameters: gaseous fuel type, engine speed and load, pilot fuel injection timing, pilot fuel mass and compression ratio. Results showed that using the Jojoba fuel with its improved properties has improved the dual fuel engine performance, reduced the combustion noise, extended knocking limits and reduced the cyclic variability of the combustion.


Author(s):  
Marko Jeftić ◽  
Ming Zheng

Enhanced premixed combustion of neat butanol in a compression ignition engine can have challenges with regards to the peak pressure rise rate and the peak in-cylinder pressure. It was proposed to utilize a butanol post injection to reduce the peak pressure rise rate and the peak in-cylinder pressure while maintaining a constant engine load. Post injection timing and duration sweeps were carried out with neat n-butanol in a compression ignition engine. The post injection timing sweep results indicated that the use of an early butanol post injection reduced the peak pressure rise rate and the peak in-cylinder pressure and it was observed that there was an optimal post injection timing range for the maximum reduction of these parameters. The results also showed that an early post injection of butanol increased the nitrogen oxide emissions and an FTIR analysis revealed that late post injections increased the emissions of unburned butanol. The post injection duration sweep indicated that the peak pressure rise rate was significantly reduced by increasing the post injection duration at constant load conditions. There was also a reduction in the peak in-cylinder pressure. Measurements with a hydrogen mass spectrometer showed that there was an increased presence of hydrogen in the exhaust gas when the post injection duration was increased but the total yield of hydrogen was relatively low. It was observed that the coefficient of variation for the indicated mean effective pressure was significantly increased and that the indicated thermal efficiency was reduced when the post injection duration was increased. The results also showed that there were increased nitrogen oxide, carbon monoxide, and total hydrocarbon emissions for larger post injections. Although the use of a post injection resulted in emission and thermal efficiency penalties at medium load conditions, the results demonstrated that the post injection strategy successfully reduced the peak pressure rise rate and this characteristic can be potentially useful for higher load applications where the peak pressure rise rate is of greater concern.


2014 ◽  
Vol 709 ◽  
pp. 78-82
Author(s):  
Xu Dong Zhang ◽  
Yin Nan Yuan ◽  
Jia Yi Du

This paper has studied the influence of the different ratio on combustion process and emissions of air premixed methanol/diesel dual fuel engine. The research was based on 4B26 diesel engine, and the 3-D numerical simulation on combustion process and emissions of the diesel engine with intake premixed methanol was carried out using AVL FIRE software. The study showed that,with the compression ratio reducing,the ignition delay period prolonged, and the ignition timing delayed, the maximum firing pressure, the peak of pressure rise rate and the maximum combustion temperature in cylinder decreased, the crank angle postponed, the NOX emission decreased and the Soot emission increased obviously.


1975 ◽  
Vol 97 (4) ◽  
pp. 1227-1233 ◽  
Author(s):  
A. F. Seybert ◽  
M. J. Crocker

A technique is presented in which the effects on noise of changing diesel engine operating parameters can be predicted. Traditionally, the effects have been determined by experiment. The technique presented in this paper utilizes experimentally determined frequency response functions between each cylinder pressure input and the engine noise. Once the frequency responses are measured, the engine noise can be calculated for an arbitrary cylinder pressure input. The effect of injection timing, engine load, and engine speed are predicted using cylinder pressure histories obtained from a single cylinder research engine. Experimental results are presented, showing good agreement with predicted data. It has been found that the measured frequency responses are independent of the cylinder pressure level. Also presented here is the multiple coherence between the cylinder pressures and the engine noise and the ordinary coherence between two typical cylinder pressures.


Energies ◽  
2021 ◽  
Vol 14 (5) ◽  
pp. 1342
Author(s):  
Van Chien Pham ◽  
Jae-Hyuk Choi ◽  
Beom-Seok Rho ◽  
Jun-Soo Kim ◽  
Kyunam Park ◽  
...  

This paper presents research on the combustion and emission characteristics of a four-stroke Natural gas–Diesel dual-fuel marine engine at full load. The AVL FIRE R2018a (AVL List GmbH, Graz, Austria) simulation software was used to conduct three-dimensional simulations of the combustion process and emission formations inside the engine cylinder in both diesel and dual-fuel mode to analyze the in-cylinder pressure, temperature, and emission characteristics. The simulation results were then compared and showed a good agreement with the measured values reported in the engine’s shop test technical data. The simulation results showed reductions in the in-cylinder pressure and temperature peaks by 1.7% and 6.75%, while NO, soot, CO, and CO2 emissions were reduced up to 96%, 96%, 86%, and 15.9%, respectively, in the dual-fuel mode in comparison with the diesel mode. The results also show better and more uniform combustion at the late stage of the combustions inside the cylinder when operating the engine in the dual-fuel mode. Analyzing the emission characteristics and the engine performance when the injection timing varies shows that, operating the engine in the dual-fuel mode with an injection timing of 12 crank angle degrees before the top dead center is the best solution to reduce emissions while keeping the optimal engine power.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
Datta Bharadwaz Yellapragada ◽  
Govinda Rao Budda ◽  
Kavya Vadavelli

Purpose The present work aims at improving the performance of the engine using optimized fuel injection strategies and operating parameters for plastic oil ethanol blends. To optimize and predict the engine injection and operational parameters, response surface methodology (RSM) and artificial neural networks (ANN) are used respectively. Design/methodology/approach The engine operating parameters such as load, compression ratio, injection timing and the injection pressure are taken as inputs whereas brake thermal efficiency (BTHE), brake-specific fuel consumption (BSFC), carbon monoxide (CO), hydrocarbons (HC), oxides of nitrogen (NOx) and smoke emissions are treated as outputs. The experiments are designed according to the design of experiments, and optimization is carried out to find the optimum operational and injection parameters for plastic oil ethanol blends in the engine. Findings Optimum operational parameters of the engine when fuelled with plastic oil and ethanol blends are obtained at 8 kg of load, injection pressure of 257 bar, injection timing of 17° before top dead center and blend of 15%. The engine performance parameters obtained at optimum engine running conditions are BTHE 32.5%, BSFC 0.24 kg/kW.h, CO 0.057%, HC 10 ppm, NOx 324.13 ppm and smoke 79.1%. The values predicted from ANN are found to be more close to experimental values when compared with the values of RSM. Originality/value In the present work, a comparative analysis is carried out on the prediction capabilities of ANN and RSM for variable compression ratio engine fuelled with ethanol blends of plastic oil. The error of prediction for ANN is less than 5% for all the responses such as BTHE, BSFC, CO and NOx except for HC emission which is 12.8%.


2015 ◽  
Vol 44 (2) ◽  
pp. 87-93 ◽  
Author(s):  
Sridhara Reddy ◽  
Maheswar Dutta ◽  
K.Vijaya Kumar Reddy

Compression ratios of the engine considerably affect the performance and emission behavior of an engine.The paper discusses about effect of compression ratios on the operating parameters such as brake specific fuelconsumption (BSFC), brake specific energy consumption (BSEC), brake thermal efficiency (BTE) and volumetricefficiency on a stationary diesel-CNG dual fuel engine by adding hydrogen fraction as a combustion booster. Theexhaust emission behavior of the engine is also presented. Addition of hydrogen in CNG has given better resultsthan diesel-CNG dual fuel operation of the engine. The volumetric efficiency and emissions like NOx are theparameters which needed attention towards this study. The paper presents experimental results and analyzes them.


Sign in / Sign up

Export Citation Format

Share Document